Материаловедческий анализ

Автор работы: Пользователь скрыл имя, 27 Января 2014 в 19:09, курсовая работа

Краткое описание

Марка материала определяется химическим составом. Химический состав - это элементы (вещества) и их соотношение, из которых изготовлен материал.
Так же в «марку материала» входят такие понятия как: способ производства материала, степень раскисления, качество, назначение, структурный класс, область применения и т. д.

Содержание

Раздел 1. Материаловедческий анализ.
1.1. Система понятий, входящих в понятие “марка материала”......................3с.
1.2. Принципы обозначения стандартных марок легированных сталей по ГОСТ4543 и в иностранных стандартах.............................................................3с.
1.3. Расшифровка стандартных марок сталей по варианту задания, структурный класс и примерное назначение.....................................................5с.
1.4. Понятие термина "КАЧЕСТВО СТАЛИ"....................................................6с.
1.5. Основные характеристики механических свойств стали, по которым оцениваются стали конкретного назначения.....................................................7с.
1.6. Как и для чего нужно управлять количеством и качеством неметаллических включений?.............................................................................8с.
1.7. На какие свойства стали разного назначения влияет величина зерна?
……………………………………………………………………………......…..9с.
1.8. Как управлять величиной зерна?...............................................................10с.
1.9. Что подразумевается под оптимальной структурой?...............................10с.
1.10.Описание процесса закалки стали…………..……………………..........11с.
1.11.Управление типом структуры образующейся при закалке……...........12с.
1.12.Описание понятий “закаливаемость” и “прокаливаемость”.................12с.
1.13. “Полоса прокаливаемости”. Описание “полосы прокаливаемости” стали, заданной номером рисунка в варианте задания…………………...........…....13с.
1.14. Стали пониженной прокаливаемости и для каких деталей их применяют………………………………………………………………….......14с.
1.15.Описание процесса старения стали………………………………...........15с.
1.16. Требования к автомобильному листу…………………………..............16с.
1.17. Термин хорошая “свариваемость стали”…………………………….....17с.
1.18. От чего зависит контактная прочность стали?.......................................17с.
1.19. Уровни прочности канатной стали и технология упрочнени…............19с.
1.20. Виды коррозионных повреждений нержавеющей стали………...........20с.
Список литературы………………………………………………...........……..22с.

Вложенные файлы: 1 файл

Материаловедческий анализ.doc

— 444.50 Кб (Скачать файл)

Сульфиды марганца мягкие, пластичны при 950…1100˚С, а при размере частиц менее 1 мкм они не деформируются. Наиболее опасны сульфиды – дендриты, при прокатке они вытягиваются в плоские пучки нитей и даже при холодной деформации удлиняются почти так же, как сам металл.

 

    1. На какие свойства стали разного назначения влияет величина зерна?

Внутри зерна феррита нет  сильных препятствий скольжению. Поэтому сопротивление его деформации течения создают границы зерна, и чем мельче зерно феррита, тем  выше предел текучести. Чем больше деформация, тем больше препятствий создают внутри зерна сами следы скольжения и тем меньше влияет размер зерна на сопротивление течению. Поэтому предел прочности зависит от размера зерна феррита слабее, чем предел текучести.

У мартенсита столь сложная субзеренная структура, что в ней границы зерна исходного аустенита – препятствие пренебрежимо слабое. Прочность мартенсита от величины зерна не зависит. Перлит, сорбит, бейнит – двухфазные структуры. Их прочность определяется прежде всего температурой образования (дисперсностью цементита), а не величиной зерна исходного аустенита.

Если разрушение вязкое, то на деформацию до разрушения величина зерна почти  не влияет. Но в условиях, например, хладноломкости хрупкое транскристаллитное разрушение (скол) распространяется по одной кристаллографической плоскости через всё зерно, то есть чем зерно феррита крупнее, тем сильнее концентрация напряжений от рассёкшей его фасетки скола и тем сталь более хрупкая.

Так же сильно влияет зерно исходного  аустенита при граничной хрупкости, вызванной ослаблением границ от собирания на них примеси. Тогда вскрыть грань зерна – зернограничную фасетку – тем легче, чем зерно крупнее (чем больше концентрация напряжений у его границ).

 

    1. Как управлять величиной зерна?

Величина зёрен зависит от числа зародышей кристаллизации и скорости их роста. Если скорость охлаждения мала, то число возникающих и растущих зародышей невелико и в конце кристаллизации формируются структуры из крупных зёрен. При большой скорости охлаждения число одновременно развивающихся центров кристаллизации, а следовательно и число зёрен возрастает и в конце кристаллизаций они оказываются меньше чем в первом случае. Это можно наблюдать на практике – в тонких сечениях литых деталей структура стали мелкозернистая, так как здесь происходит более быстрое охлаждение, чем в толстых сечениях. Чем мельче зёрна, тем выше прочность и особенно вязкость металла.

Чтобы сделать зерно  мелким, в металл вводят специальные  вещества – модификаторы. Например, в жидкую сталь при её разливке добавляют порошок железа или частицы тугоплавких оксидов, которые являются готовыми центрами кристаллизации. Процесс искусственного регулирования величины зёрен получил название модифицирования.

 

    1. Что подразумевается под оптимальной структурой?

Идеальная кристаллическая решетка металла состоит из множества повторяющихся элементарных кристаллических ячеек. Для реального металла характерны определенные несовершенства кристаллического строения.

Оптимально устойчивыми (реально существующими) структурами  элементов являются кристаллические решетки, которые обладают минимальным запасом свободной энергии F. Так, в твердом состоянии Li, Na, K, Cs, Mo, W и другие элементы имеют решетку типа К8, а Al, Ca, Cu, Ag, Au, Pt и другие – решетку типа Г6.

Однако при изменении  температурных и изобарных условий для некоторых металлов более стабильными могут быть иные структуры. Известны, например Fe с решетками типа К8 и К12; Co – с решетками типа К12 и Г6; Mn, Sn, Ti и другие элементы с различными типами кристаллических структур.

 

    1. Описание процесса закалки стали.

Закалка стали служит для повышения  прочности, твердости, упругости, износостойкости. Процесс закалки состоит в  нагреве на 30…50˚С выше критической  точки нагрева Ас3≈880˚С для доэвтектоидных сталей (полная закалка) и выше критической точки Ас1=727˚С для заэвтектоидных сталей (неполная закалка), выдержке при этих температурах и быстром охлаждении. Охлаждающими средами могут быть вода, минеральное масло, воздух, водные растворы солей, щелочей, расплавы солей. При закалке образуются неравновесные структуры с соответствующими механическими свойствами: при полной закалке – мартенсит, при неполной – мартенсит с зернами цементита. Если доэвтектоидную сталь нагреть до температуры выше температуры критической точки Ас1, но ниже Ас3, то происходит неполная закалка с образованием структуры, состоящей из мартенсита и феррита. В результате закалки понижается пластичность сталей.

Скорость нагрева и  время выдержки при закалке зависят  от химического состава стали, размеров, массы конфигурации закаливаемых деталей, типа нагревательных печей и нагревательной среды. Детали из высокоуглеродистых и легированных сталей нагревают более медленно и с большей выдержкой, чем детали из низкоуглеродистых сталей. С целью уменьшения возможных деформаций увеличивают время нагрева для деталей, более сложных по конфигурации и имеющих большую массу.

Нагрев осуществляют в  нагревательных термических печах  и печах-ваннах, подогреваемых электрической  энергией или сгорающими газом, мазутом, углем.

 

    1. Управление типом структуры, образующейся при закалке.

При закалке сталь приобретает  неравновесные структуры с соответствующими механическими свойствами. При полной закалке структура стали –  мартенсит, при неполной закалке  – мартенсит с зернами цементита. Если доэвтектоидную сталь нагреть до температуры выше температуры критической точки нагрева Ас1=727˚С, но ниже критической точки Ас3≈880˚С, то происходит неполная закалка с образованием структуры, состоящей из мартенсита и феррита.

Степень неравновесности продуктов закалки с увеличением скорости охлаждения повышается и возрастает от сорбита к мартенситу. Критическая скорость закалки имеет очень важное значение. От нее зависит такое технологическое свойство, как прокаливаемость, т.е. способность закаливаться на определенную глубину. Чем меньше критическая скорость закалки, тем на большую глубину от поверхности детали распространяется закалка. 

 

    1. Понятия “закаливаемость” и “прокаливаемость”.

Закаливаемость стали – это ее способность приобретать максимально высокую твердость после закалки. Она возрастает с увеличением содержания углерода. Углеродистые стали, содержащие менее 0,3 % углерода, не закаляются.

Прокаливаемость – глубина закаленного слоя или, другими словами, глубина проникновения мартенсита. Она зависит от химического состава, размеров деталей и условий охлаждения. Легирующие элементы, а также увеличение содержания углерода (0,8%) в стали способствуют увеличению ее прокаливаемости.

 

    1. “Полоса прокаливаемости”. Описание “полосы прокаливаемости” стали, заданной номером рисунка в варианте задания.

В заданном варианте рассматривается  “полоса прокаливаемости” для стали  марки 20ХГР (чертеж 8).

20ХГР - сталь конструкционная легированная, качественная.  Содержание  углерода - 0,20% C; хрома – 1% Cr; марганца – 1%; бор – 1%; остальное железо Fe.

Полоса прокаливаемости  – линии верхней и нижней границы, между которыми должны укладываться кривые прокаливаемости HRC(z) всех плавок. Кривая прокаливаемости – Распределение твердости HRC(z) с расстоянием z от торца образца цилиндра. Полосу прокаливаемости нормируют для каждой конструкционной стали ГОСТ 1050 и ГОСТ 4543.

Рассмотрим полосу прокаливаемости  для стали марки 40ХФА. 
На графике изображены кривые прокаливаемости. Кривые прокаливаемости показывают зависимость твердости HRC от Rt(расстояние от охлаждаемого торца образца). Измерение расстояний Rt во время испытаний находится в промежутке (1<=Rt<=35) мм с интервалом измерений ΔRt=1,5 мм.

При Rt=1мм 38<HRC<44

При Rt=18мм HRC<33

При Rt=30мм       HRC<26

Чем больше расстояние от охлаждаемого образца, тем хуже прокаливаемость, и следовательно твердость (HRC).

Проанализируем таблицы  соответствия между величиной HRC(z) и диаметром прутка (d).

1). Спокойная вода.

На поверхности HRC=96, независимо от диаметра прутка (d).

Прокаливаемость в центре прутка и ¾R от центра зависит от диаметра прутка.

В центре прутка HRCmax=92 при d=25,5–27мм

2). Спокойное масло.

В данной закалочной среде  прокаливаемость изменяется на поверхности  прутка в зависимости от его диаметра.

HRCmax=98 при d=19,5–27мм. (поверхность).

HRC=92 при d=25,5–27мм. (¾R от центра).

HRC=75 при d=27мм. (центр прутка).

Вывод:

1). С ростом диаметра  прутка, HRC(d) увеличивается до определенного значения.

2). Максимальной закаливаемости HRC=176 можно добиться в спокойной воде на расстоянии ¾R от центра, при d=22,5мм

3). Закаливаемость стали  выше в спокойной воде,  при  любом диаметре прутка и в  различных местах замера твердости.

 

    1. Стали пониженной прокаливаемости и для каких деталей их применяют.

В сталях пониженной прокаливаемости (как 55ПП – сталь 58 по ГОСТ 1050) гарантируется низкая прокаливаемость при высоком содержании углерода.

Стали пониженной прокаливаемости  можно применять для деталей  с твердой поверхностью, при вязкой сердцевине (шестерни, зубчатые передачи).

Обычной закалкой можно получать тонкий (1,5…3 мм) твердый (полумартенситный) слой с зерном № 11-12 на поверхности зуба шестерен.

Аналогичного эффекта можно  добиться только многочасовой цементацией  малоуглеродистой стали.

 

    1. Описание процесса старения стали.

В низкоуглеродистой стали, в структуре которой преобладает феррит, известно изменение свойств при хранении (или в эксплуатации) после быстрого охлаждения от высоких температур (закалочное старение) или после пластической деформации (деформационное старение).

Старение обусловлено примесями внедрения (углеродом и азотом), растворенным в феррите. Они достаточно быстро диффундируют уже при комнатной температуре, а «носители» пластической деформации – дислокации – их притягивают и, «обрастая» сегрегациями примеси, закрепляются. После старения, пока «свободных» дислокаций мало, пластическая деформация идет лишь по мере рождения новых. По мере размножения дислокаций сопротивление течению с деформацией падает. 

Появляется «зуб текучести». Пока «смягчённая» размножением зона распространяется на весь образец, сопротивление деформации не меняется. Старение длится дни и месяцы при комнатной температуры (часы и дни – при 100 ˚С) и проходит четыре стадии. На первой стадии вдоль дислокаций оседают сплошные в «одноатомные» цепочки атомов примеси, от чего растут предел текучести и деформация Людерса. На второй стадии длина площадки неизменна, но вместе и одинаково с пределом текучести поднимается вся диаграмма. На третьей стадии на дислокациях есть и частицы размером в несколько нанометров. Они упрочняют и сами по себе, так что подрастает предел прочности, но соответственно падают удлинение и работа разрушения. Иногда можно дождаться и четвёртой стадии – «перестарения» (медленного смягчения от укрепления частиц).

Старение вредно понижением пластичности (листа для холодной штамповки) или же охрупчиванием конструкции (зуб текучести означает большое сопротивление малым пластическим деформациям – местные перегрузки хуже «рассасываются»). Старение усиливает хладноломкость, отчего, например, несвязанный азот понижает ударную вязкость строительной стали.

 

 

    1. Требования к автомобильному листу.

Кузов автомобиля изготавливается  холодной штамповкой (и точечной сваркой) из тонкого (0,5…3 мм) листа низкоуглеродистой  стали.

Обычно до толщины около 2мм лист доводят горячей прокаткой на непрерывном широкополосном стане, затем окалину удаляют травлением. После холодной прокатки до конечной толщины полосу отжигают.

Из норм штампуемости (удлинение δ>34…40%: вытяжки по Эриксену, нормальной R и плоскостной ∆R пластической анизотропии) вытекает много дополнительных требований к структуре: к зернограничному цементиту, к величине зерна (балл № 6-8 – из-за полос Людерса и «Апельсиновой корки»), к старению от остаточного азота и к наночастицам (например, A1N или MnS).

Для выполнения этого  набора требований нужна цепь технологий высокого уровня, начинающаяся от плавки (чтобы обеспечить, например, в 1Р-сталях 0,003…0,005%С и 0,003…0,005%N и в строгой пропорции с их количеством вводить 0,03…0,05%А1 и 0,05…0.08%Тi к моменту кристаллизации).

Информация о работе Материаловедческий анализ