Автор работы: Пользователь скрыл имя, 15 Декабря 2012 в 15:05, реферат
Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией. Основные морфологические признаки элементов мышечных тканей – удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов – специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.
Введение 2
Скелетная мышечная ткань 4
Сердечная мышечная ткань 5
Гладкие мышечные ткани 6
Сокращение мышц 7
Роль кальция в процессе сокращения 8
Саркоплазматический ретикулум 10
Мышцы 12
УЛЬТРАСТРУКТУРА И БИОХИМИЧЕСКИЙ СОСТАВ МЫШЦ 13
МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ 16
СТРУКТУРА И ФУНКЦИИ НЕЙРОНА 18
Заключение 21
Краткое описание процессов сокращения и расслабления
Процессы, контролирующие сокращение скелетной мышцы, изображены в общем виде на рис.6. Приведем их перечень.
1. Поверхностная мембрана
мышечного волокна
2. Потенциал действия поступает в глубь мышечного волокна по Т-трубочкам.
3. В ответ на деполяризацию Т-трубочек сигнал, который, вероятно, опосредуется молекулами ИФ3, распространяется от этих трубочек к концевым цистернам саркоплазматического ретикулума.
4. Этот химический посредник вызывает открытие кальциевых каналов в СР и высвобождение секвестированных там ионов кальция.
5. Концентрация свободного Са 2+ в миоплазме возрастает от значения 10 -7 М и ниже (в покое) до приблизительно 10 -6 М и более (в активном состоянии). Кальций соединяется с тропонином, вызывая в молекуле этого белка конформационные изменения.
6. Конформационные изменения
молекулы тропомиозина
7. Миозиновые поперечные
мостики прикрепляются к
8. Натяжение мостикового
шарнира приводит к активному
вхождению актиновых
9. Прежде чем произойдет
следующий цикл движения
10. Наконец, в результате
активной работы СР уровень
Са 2+ в саркоплазме снова
Между структурой саркотубулярной
системы и функцией мышцы существует
интересная связь. Те мышцы, которые
сокращаются и расслабляются
очень быстро, имеют высокоразвитый
СР и обширную сеть Т-трубочек. А
те мышцы, сокращение и расслабление
которых происходит медленно, соответственно
имеют менее развитый СР. Различные
скорости сокращения и расслабления,
по-видимому, коррелируют с эффективностью
СР в регуляции изменений
Передвижение животного, перемещение частей его тела относительно друг друга, работа внутренних органов, акты дыхания, кровообращения, пищеварения, выделения осуществляются благодаря деятельности различных групп мышц.
У высших животных имеются три типа мышц: поперечнополосатые скелетные (произвольные), поперечнополосатые сердечные (непроизвольные), гладкие мышцы внутренних органов, сосудов и кожи (непроизвольные).
Отдельно рассматриваются специализированные сократительные образования - миоэпителиальные клетки, мышцы зрачка и цилиарного тела глаза.
Помимо свойств возбудимости и проводимости, мышцы обладают сократимостью, т. е. способностью укорачиваться или изменять степень напряжения при возбуждении. Функция сокращения возможна благодаря наличию в мышечной ткани специальных сократимых структур.
Скелетные мышцы. На поперечном сечении продольноволокнистой мышцы видно, что она состоит из первичных пучков, содержащих 20 - 60 волокон. Каждый пучок отделен соединительно тканной оболочкой - перимизиумом, а каждое волокно - эндомизиумом. В мышце животных насчитывается от нескольких сот до нескольких сот тысяч волокон с диаметром от 20 до 100 мкм и длиной до 12 - 16 см.
Отдельное волокно покрыто истинной клеточной оболочкой - сарколеммой. Сразу под ней, примерно через каждые 5 мкм по длине, расположены ядра. Волокна имеют характерную поперечную исчерченность, котораяобусловлена чередованием оптически более и менее плотных участков.
Волокно образовано множеством
(1000 - 2000 и более) плотно упако ванных
миофибрилл (диаметр 0,5 - 2 мкм), тянущихся
из конца в конец. Между миофибриллами
рядами расположены митохондрии, где
происходят процессы окислительного фосфорилирования,
необходимые для снабжения
За счет чередования изотронных и анизотропных сегментов каждая миофибрилла имеет поперечную исчерченность. Упорядоченное же расположение миофибрилл в волокне придает такую же исчерченность волокну в целом.
Электронная микроскопия показала, что каждая миофибрилла состоит из параллельно лежащих нитей, или протофибрилл (филаментов) разной толщины и разного химического состава. В одиночной миофибрилле насчитывае.тся 2000 - 2500 протофибрилл. Тонкие протофибриллы имеют поперечник 5 - 8 нм и длину 1 - 1,2 мкм, толстые - соответственно 10 - 15 нм и 1,5 мкм.
Толстые протофибриллы, содержащие молекулы белка миозина, образуют анизотропные диски. На уровне полоски М миозиновые нити связаны тончайшими поперечными соединениями. Тонкие протофибриллы, состоящие в основном из белка актина, образуют изотропные диски.
Нити актина прикреплены
к полоске Х, пересекая ее в
обоих направле ниях; они занимают
не только область И-диска, но и заходят
в промежутки между нитями миозина
в области А-диска. В этих участках
нити актина и миозина связаны
между собой поперечными
Структурно-функциональной
сократительной единицей миофибриллы
является саркомер - повторяющийся
участок фибриллы, ограниченный двумя
полосками Х. Он состоит из половины
изотропного, целого анизотропного
и половины другого изотропного
дисков. Величина саркомера в мышцах
теплокровных составляет около 2 мкм. На
электронном микрофото
Гладкая эндоплазматическая
сеть мышечных волокон, или саркоплазма
тический ретикулум, образует единую систему
трубочек и цистерн. Отдельные трубочки
идут в продольном направлении, образуя
в зонах Н мио фибрилл
В 1 г поперечнополосатой мышечной ткани содержится около 100 мг сократительных белков, главным образом миозина и актина, образуюших актомиозиновый комплекс. Эти белки нерастворимы в воде, но могут быть экстрагированы растворами солей. К другим сократительным белкам относятся тропомиозин и комплекс тропонина (субъединицы Т, 1, С), содержашиеся в тонких нитях.
В мышце содержатся также миоглобин, гликолитические ферменты и другие растворимые белки, не выполняющие сократительной функции
Белковый состав скелетной мышцы
Белок
Молекулярная масса, дальтон, тыс.
Содержание белка, %
Миозин
460
55 - 60
Актин-р
46
20 - 25
Тропомиозин
70
4 - 6
Комплекс тропонина (ТпТ, Тп1, Тпс)
76
4 - 6
Актинин-и Другие белки (миоглобин, ферменты и пр.)
180
1 - 2
5 - 10
Гладкие мышцы. Основными структурными элементами гладкой мышечной ткани являются миодиты - мышечные клетки веретенообразной и звездчатой формы длиной 60 - 200 мкм и диаметром 4 - 8 мкм.Наибольшая длина клеток (до 500 мкм) ыаблюдается в матке во время беременности.
Ядро находится в середине клеток. Форма его эллипсоидная, при сокращении клетки оно скручивается штопорообразно, Вокруг ядра сконцентрированы митохондрии и другие трофические компоненты.
Миофибриллы в саркоплазме гладкомышечных клеток, по-видимому, отсутствуют. Имеются лишь продольно ориентированные, нерегулярно распределенные миозиновые и актиновые протофибриллы длиной 1 - 2 мкм.
Поэтому поперечной исчерченности
волокон не наблюдается. В протоплазме
клеток находятся в большом количестве
пузырьки, содержащие Са++, которые, вероятно,
соответствуют
В стенках большинства
полых органов клетки гладких
мышц соединены особыми
Такие образования, в которых клетки тесно соприкасаются, но цитоплазматическая и мембранная непрерывность между ними отсутствует (пространство между мембранами в области контактов составляет 20 - 30 нм), называют "функциональным синцитием”.
Клетки, образующие синцитий,
называют унитарными; возбуждение может
беспрепятственно распространяться с
одной такой клетки на другую, хотя
нервные двигательные окончания
вегетативной нервноЙ системы раслоложены
лишь на отдельных из них. В мышечных
слоях некоторых крупных
В обычных условиях скелетные мышцы возбуждаются импульсами, которые поступают по волокнам двигательных нейро нов (мотонейронов), находящихся в передних рогах спинного мозга или в ядрах черепномозговых нервов.
В зависимости от количества концевых разветнлений нервное волокно образует синаптические контакты с болыыим или меньшим числом мышечных волокон.
Мотонейрон, его длинный отросток (аксон) и группа мышечных волокон, иннервируемых зтим аксоном, составляют двигательную, или нейромоторную, единицу.
Чем более тонка, специализированна
в работе мышца, тем меньшее количество
мышечных волокон входит в нейромоторную
единицу. Малые двигвтельные единицы
включают лишь 3 - 5 волокон (например, в
мышцах глазного яблока, мелких мышцах
лицевой части головы), большие
двигательные единицы - до волонно (аксон)
нескольких тысяч волокон (в крупных
мышцах туловища и конечностей). В
большинстве мышц двигательные единицы
соответствуют первичным
Нейромоторная единица работает как единое делое: импульсы, исходящие от мотонейрона, приводят в действие мышечные волокна.
Сокращению мышечных волокон предшествует их злектрическое возбуждение, вызываемое разрядом мотонейронов в области концевых пластинок.
Возникающий под влиянием медиатора потенциал концевой пластинки (ПКГ1), достигнув порогового уровня (сколо - 30 мВ), вызывает генерацию потенциала действия, распространяющегося в обе стороны вдоль мышечного волокиа.
Возбудимость мышечных волокон ниже возбудимости нервных волокон, иннервирующих мышцы, хотя критический уровень деполяризации мембран в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышечных волокон выше (около - 90 мВ) потенциала покоя нервных волокон ( - 70 мВ). Следовательно, для возникновения потенциала действия в мы шечном волокне необходимо деполяризовать мембрану на большую величину, чем в нервном волокне.
Длительность потенциала действия в мышечном волокне составляет 5 мс (в нервном соответственно 0,5 - 2 мс), скорость проведения возбуждения до 5 м/с (в миелинизированных нервных волокнах - до 120 м/с).
Молекулярные механизмы
сокращения. Сокращение - это изменение
механического состояния
Согласно лринятой "теории скольжения” в основе сокращения лежит взаимодействие между актиновыми и миозиновымй нитями миофибрилл вследствие образования поперечных мостиков между ними. В результате происходит "втягивание” тонких актиновых миофиламентов между миози-новыми.
Во время скольжения сами актиновые и миозиновые нити не укора чиваются; длина А-дисков также остается прежней, в то время как 3-диски и Н-зоны становятся более узкими. Не меняется длина нитей и при растя жении мышцы, уменьшается ли~иь степень их взаимного перекрывания.
Эти движения основаны на обратимом изменении конформации концевых частей молекул миозина (поперечных выступов с головками), при котором связк между толстым филаментом миозина и тонким филаментом актина образуются, исчезают и возникают вновь.
До раздражения или в фазе расслабления мономер актина недоступен для взаимодействия, так как этому мешает комплекс тропонина и определенная конформация (подтягивание к оси филамента) концевых фрагментов молекулы миозина.
В основе молекулярного механизма
сокращения лежит процесс так
называемого
Информация о работе Мышцы и мышечные ткани по анатомии животных