Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания

Автор работы: Пользователь скрыл имя, 24 Декабря 2013 в 10:22, курсовая работа

Краткое описание

Рабочие площадки служат для размещения производственного оборудования на определенной высоте в помещении цеха промышленного здания. В конструкцию площадки входят колонны, балки, настил и связи. Система несущих балок стального покрытия называется балочной клеткой.
Вывод: стенка колонны толщиной 12 мм на срез проходит. Торец колонны фрезеруется, и поэтому толщина швов, соединяющих опорную плиту со стержнем колонны и ребрами, назначается конструктивно, равной kf = 8 мм. С целью укрепления стенки колонны и вертикальных ребер от возможной потери устойчивости снизу вертикальные ребра обрамляются горизонтальными ребрами толщиной tP = 8 мм.

Содержание

1. Исходные данные на проектирование стальной балочной клетки.
2. Расчет стальной балочной клетки.
2.1. Разработка вариантов стальной балочной клетки.
2.1.1. Вариант 1. Балочная клетка нормального типа.
2.1.2. Вариант 2. Балочная клетка усложненного типа.
2.2. Проектирование составной сварной главной балки.
2.2.1. Подбор сечения главной балки
2.2.2. Проверка прочности главной балки
2.2.3. Проверка прогиба главной балки.
2.2.4. Определение типа сопряжения вспомогательной и главной балок.
2.2.5. Изменение сечения главной балки.
2.2.6. Расчет поясных сварных швов.
2.2.7. Проверка на устойчивость сжатой полки.
2.2.8. Проверка устойчивости стенки балки.
2.2.9. Расчет опорного ребра жесткости главной балки.
2.2.10. Расчет болтового соединения
2.3. Проектирование колонны сплошного сечения
2.3.1. Расчетная длина колонны и сбор нагрузки
2.3.2. Подбор сечения колонны
2.3.3. Проверка устойчивости полки и стенки колонны.
2.3.4. Расчет базы колонны.
2.3.5. Расчет оголовка колонны.
Литература

Вложенные файлы: 1 файл

Документ Microsoft Word (2).doc

— 765.50 Кб (Скачать файл)

А¢ = 2А¢f + АW = 2×20×1,8+1,0×124 = 196 см2

  • момент инерции

- момент сопротивления

- статический момент полки относительно  оси Х-Х

Х = tf bf(0,5hW + 0,5tf) = 1,8 × 20 × 0,5(124+1,8) = 2264,4 см3

- статический момент полусечения  относительно оси Х-Х

SХ = S¢f +0,125× tW ×h2W = 2264,4+0.125×1242×1 = 4186,4 см3

 

Расчетные усилия в месте изменения  сечения.

Изгибающий момент

М¢= Rа × 2,92 - (G+Р)(2,92-1,25)=3(G+Р) × 2,92-1,67(G+Р) = 7,09 (G+Р) = 7,09 × 271= 1923,0 кН

Перерезывающая сила

Q¢ = Qmax - (G+P)= 813,69 - 271,23 = 542,46 кН

Проверка напряжений

а) в месте изменения сечения

- максимальные нормальные напряжения

- касательные напряжения в стенке  под полкой

 < RSgc = 0,58 × 315 × 1= 182,7 МПа

- приведенные напряжения под  полкой

1,15 Rg gc = 1,15× 345 = 396,75 МПа

sred < 1,15 Rg gc

 

2.2.6. Расчет поясных сварных швов.

 

Полки составных сварных балок  соединяют со стенкой на заводе автоматической сваркой. Сдвигающая сила на единицу длины

,

Для стали С375 по табл. 55* СНиП II-23-81* принимаем сварочную проволоку Св-10НМА для выполнения сварки под флюсом АН-348-А.

Определим требуемую высоту катета Кf поясного шва "в лодочку".

1. Расчет по металлу шва.

Коэффициент глубины провара шва bf =1,1 (СНиП II-23-81*, табл.34)

Коэффициент условия работы g wf = 1 (СНиП II-23-81*, пп. 11.2)

Расчетное сопротивление металла R wf =240 МПа

bf g wf R wf = 1,1× 1×240 = 264 МПа

2. Расчет по металлу границы  сплавления.

Коэффициент глубины провара шва bz =1,15 (СНиП II-23-81*, табл.34)

Коэффициент условия работы g wz = 1 (СНиП II-23-81*, пп. 11.2)

Расчетное сопротивление металла R wz =0,45 R un = 0,45 ×490 = 220,5 МПа

bz g wz R wz = 1,1× 1×220,5 = 253,6 МПа

Сравнивания полученные величины, находим

(b g w R w)min = 253,6 МПа

Высота катета поясного шва должна быть не менее

kf ≥ 0,8 мм

По толщине наиболее толстого из свариваемых элементов (tf = 18 мм) по табл. 38 СНиП II-23-81*, принимаем kf =  7 мм.

 

2.2.7. Проверка на устойчивость сжатой полки.

 

Устойчивость полки будет обеспечена, если отношение свеса полки bef к ее толщине tf не превышает предельного значения: , где расчетная ширина свеса полки bef равна:


Т.к. 9,72 ‹ 12,8, устойчивость поясного листа обеспечена.

 

2.2.8. Проверка устойчивости стенки  балки.

 

Для обеспечения устойчивости стенки вдоль пролета балки к стенке привариваются поперечные двусторонние ребра жесткости.

Расстояние между поперечными  ребрами при условной гибкости стенки , не должно превышать 2hw . Условная гибкость стенки определяется по формуле

.

При lw > 3,5 необходима проверка устойчивости стенки с установкой ребер жесткости с шагом не более 2hw = 2×124 = 248 см.


Т.к. сопряжение балок выполняется  в пониженном уровне, установку поперечных ребер предусматриваем с шагом 2,0 м.

Ширина ребер должна быть не менее

Принимаем bh = 100 мм.

Толщина ребра

Принимаем tS = 8 мм.

Проверка устойчивости стенки балки  во втором отсеке в месте изменения сечения.

Критические нормальные напряжения

;

По табл. 21, 22 СНиП II-23-81* определяем при d = ¥ и b = ¥, сcr = 35,5

Критические касательные напряжения

Нормальные и касательные напряжения в верхней фибре стенки

а) нормальные s = sх,а = 268,67 МПа;

б) касательные t = Q¢/(twhw) = 542, 46 ×10-3/(0,01×1,24) = 43,75 МПа.

Проверка устойчивости стенки

.

Проверка устойчивости стенки балки  в первом отсеке (на расстоянии 125 см от опоры).

Изгибающий момент

М = RA ×1,25 = 817,58 кН×м.

Нормальные и касательные напряжения

Проверка устойчивости стенки

Проверка устойчивости удовлетворяется.

 

2.2.9. Расчет опорного ребра жесткости главной балки.

 

Принимаем сопряжение балки с колонной шарнирным, с опиранием на колонну сверху. Опорное ребро жесткости крепится сварными швами к стенке балки. Нижний торец опорного ребра балки остроган для непосредственной передачи давления на колонну.

Толщина опорного ребра определяется из расчета на смятие его торца

, где N = RA = 817,58 кН – опорная реакция;

RP = Run/gm = 490/1,025 = 478 МПа – расчетное сопротивление стали смятию торцевой поверхности; b = b¢f = 20 см – ширина опорного ребра.

Принимаем толщину опорного ребра t = 10 мм, а опорный выступ а = 14 мм <1,5t = 1,5×10 = 15 мм.

Проверка ребра на устойчивость.

Площадь расчетного сечения ребра:

,

где .

Радиус инерции сечения ребра

Гибкость ребра  .

Условная гибкость .

Коэффициент продольного изгиба при lХ = 1,136


.

Проверка опорного ребра на устойчивость:

Расчет катета сварных швов крепления ребра к стенке балки:

По толщине более толстого из свариваемых элементов принимаем  катет шва Kf = 5 мм.

 

2.2.10. Расчет болтового соединения

 

Сопряжение вспомогательной балки  с главной выполняется поэтажно.

При пяти грузах в пролете опорная  реакция вспомогательной балки  равна

RA = 3,5 (G+P) = 3,5×33,248 = 116,4 кН

Принимаем болты нормальной точности (класс В), класс по прочности – 4,6, диаметром 20 мм. Расчетное сопротивление  срезу болтов для принятого класса прочности Rbs = 150 Мпа.

Расчетные усилия, которые может  выдержать один болт:

а) на срез

Nbs = Rbs×gb×A×ns,

где Rbs = 150 МПа,

gb = 0,9 – коэффициент условия работы,

ns = 1 – число срезов болта.

А = pd2/4 = 3,142×2,02/4 = 3,14 см2 – расчетная площадь сечения болта

Nbs = 150 ×103× 0,9 × 3,14 × 10-4 = 42,39 кН.

б) на смятие

Nb = R × gb × d × S tmin,

где gb = 0,9;

R = 690 МПа – расчетное сопротивление на смятие для стали при RUM = 490 МПа

S tmin = 10 мм – толщина стенки балки и ребра.

Nb = 690 × 103× 0,9 × 20 ×10-3× 10× 10-3 = 124,2 кН.

Сравнивая результаты, принимаем меньшее Nbs,min = 42,39 кН.

Требуемое количество болтов в соединении

Принимаем 3 болта диаметром 20 мм, диаметр  отверстия D=22 мм.

Проверка касательных напряжений в стенке вспомогательной балки с учетом ослабления отверстиями диаметром 22 мм под болты, а также с учетом ослабления сечения балки из-за вырезки полки в стыке, выполняется по формуле:

где Qmax = RA = 93,68 кН

hW = h – 2tf = 39,2 - 2×1,05 = 37,1

a = b/(b-d) = 146/(146 – 22) = 1,18 – коэффициент ослабления сечения


Проверка удовлетворяется.

Расход стали на перекрытие

 

 

2.3. Проектирование колонны сплошного сечения

 

2.3.1. Расчетная длина колонны и сбор нагрузки

 

НГБ = ОВН - hстр

НГБ = 8,4 – 1,774 = 6,626 м

Заглубление фундамента hф = 0,7 м.

Геометрическая длина колонны

L = НГБ + hф = 7,326 м.

 

При опирании балок на колонну сверху, колонна рассматривается как  шарнирно закрепленная в верхнем  конце. Соединение с фундаментом легких колонн в расчете также принимается шарнирным. Поэтому длина колонны определяется при m = 1:

Lef = mL = 1× 7,326 = 7,326 м.

Грузовая площадь Агр = LГ LВ = 17,5 × 7 = 122,5 м2.

 

Сбор нагрузки на колонну

Таблица 6

 

Наименование нагрузки

Нормативная нагрузка, кН

gf

Расчетная нагрузка, кН

1

Временная нагрузка Р = р × Агр = 12 × 122,5

1470

1,2

1764

2

Собственный вес настила и балок

G = mngAгр = 151,1 × 10-3×9,81 × 122,5

181,58

1,05

190,66

Итого G+P

1651,58

 

1954,66


 

 

2.3.2. Подбор сечения колонны

 

Выполним расчет относительно оси  Y, пересекающей полки. Гибкость колонны lу = 89,3. Находим jу = 0,50.

Требуемая площадь сечения колонны  Атр = 115,2 см2.

Требуемые радиус инерции и ширина полки

 

Ширина полки находится из соотношения iY » 0,24bf .

bf = 36 см – принимаем ширину полки, в соответствии с сортаментом прокатной стали.

Высоту стенки hW назначаем так, чтобы удовлетворялось условие h³ bf, hW = 360 мм. Назначив толщину tW = 1,2 см, получим площадь сечения стенки: АW = 43,2 см2. Свес полки:

bef = 0,5(bf – tW) = 0,5(360-12) = 17,4 см.

Предельное значение bef = 17,5 см – находится из условия возможности применения автоматической или полуавтоматической сварки. Т.к. величина свеса полки меньше предельной, условие технологичности сварки выполняется.

Геометрические характеристики сечения.

Площадь сечения:

А = 0,5 (Атр – АW) = 115,2 см2.

Момент инерции:

Радиус инерции:

Гибкость:

Приведенная гибкость:

Коэффициент продольного изгиба:

Включаем в нагрузку вес колонны:

Gк = gАLygf = 77× 115,2× 10-4×7,326×1,1×1,05 = 7,5 кН

Полная расчетная нагрузка Gp = 1962,5 кН

Проверка колонны на устойчивость.

Недонапряжение составляет 1,2%.

Проверка предельной гибкости.

lU=180 - 60a =180 – 60 × 0,987 = 120,78

где

Т.к. lY = 89,3 < lU = 120,78, проверка гибкости проходит.

 

2.3.3. Проверка устойчивости полки  и стенки колонны.

 

Отношение свеса полки к ее толщине:

Наибольшее отношение  при условии выполнения устойчивости полки равно 17,72. Т.к. , устойчивость полок обеспечивается.

Проверим устойчивость стенки по условию .

; ; lUW = 1,2+0,35×l = 1,2+0,35 × 3,65 = 2,5


Принимаем 2,3.

30 < 56,2 – устойчивость стенки  колонны обеспечена.

Т.к. , то поперечные ребра жесткости по расчету устанавливать не требуется.

По конструктивным соображениям принимаем  на отправочном элементе два парных ребра. Назначим размеры парных ребер: ширина bP = hW/30 + 40 мм = 36/30 + 40 = 41,2. Принимаем bP =50 мм.

Толщина tP ³ bP/12 = 50/12 = 4,2 мм. Принимаем tP = 6 мм.

Информация о работе Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания