Вселенная. Метагалактики. Галактики

Автор работы: Пользователь скрыл имя, 25 Апреля 2012 в 19:47, реферат

Краткое описание

Вселенная, весь мир, безграничный во времени и пространстве и бесконечно разнообразный по тем формам, которые принимает материя в процессе своего развития. Вселенная существует объективно, независимо от сознания человека, её познающего. Вселенная содержит гигантское множество небесных тел, многие из которых по размерам превосходят Землю иногда во много миллионов раз. Всякое подлинно научное исследование признаёт объективное существование, материальность Вселенной.

Содержание

Введение 3
I.Вселенная. 4
1.Что такое Вселенная? 4
2.Структура Вселенной 5
II.Метагалактики 8
III.Галактики 12
Заключение 29
Литература 30

Вложенные файлы: 1 файл

реферат по енкм.doc

— 149.50 Кб (Скачать файл)


МИНОБОРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

УНИВЕРСИТЕТ ИМ.М.АКМУЛЛЫ»

ИНСТИТУТ ФИЛОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ И МЕЖКУЛЬТУРНЫХ КОММУНИКАЦИЙ

 

 

                                                                                                                 Кафедра программирования и ВМ

 

 

         Направление: педагогическое               образование

         Курс I

         Группа 105

                                         

РЕФЕРАТ

ВСЕЛЕННАЯ. МЕТАГАЛАКТИКИ. ГАЛАКТИКИ.

 

 

 

Выполнил:

  Г.Р.Гареева

Проверил:

       Н.С.Илюшина

 

Уфа- 2011

Оглавление

Введение

I.Вселенная.

1.Что такое Вселенная?

2.Структура Вселенной

II.Метагалактики

III.Галактики

Заключение

Литература

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Вселенная, весь мир, безграничный во времени и пространстве и бесконечно разнообразный по тем формам, которые принимает материя в процессе своего развития. Вселенная существует объективно, независимо от сознания человека, её познающего. Вселенная содержит гигантское множество небесных тел, многие из которых по размерам превосходят Землю иногда во много миллионов раз. Всякое подлинно научное исследование признаёт объективное существование, материальность Вселенной.

Материализм считает, что различные явления, происходящие в мире, взаимосвязаны и обусловлены. Они развиваются в пространстве и времени. Изучение закономерностей, которым подчиняются эти связи, является основной задачей естествознания. В противоположность философскому идеализму, утверждающему, что пространство и время являются не объективной реальностью, а формами человеческого созерцания, материализм признаёт объективную реальность пространства и времени. Поэтому пространство и время также подвергаются изучению со стороны естествознания.

 

 

 

 

 

 

 

 

 

 

 

I.Вселенная.

1.Что такое Вселенная?

         Наша Вселенная - это вещество, энергия и пространство. Она включает в себя всё: от крошек на полу в нашей кухне, до Солнца, планет, звёзд и галактик, а также пыли и газов в межзвёздном пространстве и света, струящегося сквозь сумрак космоса. Вселенная состоит из всех этих частей, вместе взятых. Само же слово «вселенная» происходит от латинского выражения, которое означает «единственный в своём роде». Хотя это и нелегко объяснить с нашей, земной точки зрения, но безграничная Вселенная обладает определённой структурой. Так, планеты вращаются по орбитам вокруг звёзд. Миллиарды звёзд группируются в галактики. Большая честь галактик образует группы, которые называются скоплениями. Скопления, в свою очередь, обычно формируются в ещё более крупные структуры – сверхскопления. Наконец, из сверхскоплений складываются звёздные структуры невообразимо чудовищных размеров – галактические стены и пласты. Это и есть самые крупные галактические образования.

Краткие факты:

Масштабы Вселенной:

Земля – 12 756 км в поперечнике

Солнце – 1 392 000 км в поперечнике

Орбита Земли – около 300 миллионов км в поперечнике

Орбита Плутона – около 12 миллиардов км в поперечнике

Галактика Млечный Путь – 100 000 световых лет в поперечнике

Местная группа звезд – 6 млн. световых лет в поперечнике

Местное сверхскопление – 80 млн. световых лет в поперечнике

Обозримая вселенная – от 26 до 30 миллиардов световых лет в поперечнике.

          Вселенная (мир, мироздание, свет, космос, реальность) — совокупность всего сущего. Согласно последним научным данным, возраст Вселенной составляет 13,7±0,2 миллиарда лет. Значение термина «Вселенная» зависит от контекста, в котором он используется. В материалистической философии Вселенная определяется как совокупность всех существующих материальных частиц и пространства, в котором имеют место отношения между ними. В космологии Вселенная понимается как конечный или бесконечный пространственно-временной континуум, в которой существуют вся материя и энергия. Термины «известная Вселенная», «наблюдаемая Вселенная» или «видимая Вселенная» часто используются для описания части Вселенной, которая доступна для наблюдений. Поскольку космическое расширение исключает значительные части Вселенной из наблюдаемого горизонта, большинство космологов считает, что наблюдение всего континуума невозможно и следует использовать термин «наша Вселенная» в отношении той части, которая известна человечеству.

Существует также гипотеза о том, что Вселенная может быть частью мульти вселенной — системы, содержащей множество других вселенных.

2.Структура Вселенной

         Расстояния, доступные современным телескопам, составляют миллиарды световых лет. Вселенную на таких масштабах изучает астрономия и космология. Теоретической базой для космологии является общая теория относительности. В самом крупном масштабе Вселенная представляет собой расширяющееся пространство, заполненное губкообразной клочковатой структурой. Стенки этой губчатой структуры представляют собой скопления миллиардов галактик. Расстояния между ближайшими друг к другу галактиками составляют около миллиона световых лет. Каждая галактика составлена из сотен миллиардов звёзд, которые обращаются вокруг центрального ядра. Размеры галактик составляют до сотен тысяч световых лет. Считается, что большинство звёзд являются кратными и представляют собой центры планетарных систем из нескольких планет. Расстояния между компаньонами кратных систем или планетами и их звёздами составляют десятки и сотни астрономических единиц (миллиарды и десятки миллиардов километров). Наиболее важный результат космологии — открытие расширения Вселенной — был получен путём наблюдений красного смещения и количественно оценен законом Хаббла. Экстраполяция этого расширения назад во времени приводит к гравитационной сингулярности, абстрактному математическому понятию, которое может соответствовать или не соответствовать реальности. Это дает основание теории Большого взрыва, доминирующей на сегодня модели в космологии. Согласно данным НАСА, полученным с помощью WMAP, возраст Вселенной от момента Большого взрыва был оценен в 13,7 миллиарда лет с погрешностью в один процент. Данная оценка основывается на предположении, что лежащая в основе модель для анализа данных корректна. Другие методы оценки возраста Вселенной дают другие результаты. Фундаментальным доводом в пользу Большого взрыва является тот факт, что чем дальше галактика находится от нас, тем быстрее она удаляется от нас. Подтверждением также служит космическое микроволновое фоновое излучение (реликтовое излучение), которое возникло вскоре после Большого взрыва. Это реликтовое излучение однородно во всех направлениях. Этот факт космологи пытались объяснить ранним периодом инфляционного расширения, последовавшего за Большим взрывом. Единой точки зрения, является ли Вселенная действительно бесконечной или конечной в пространстве и объёме, не существует. Тем не менее, наблюдаемая Вселенная, включающая все местоположения, которые могут воздействовать на нас с момента Большого взрыва, конечна, поскольку конечна скорость света. Границей космического светового горизонта является расстояние 4,19 гигапарсека. Действительное расстояние до границы наблюдаемой Вселенной больше благодаря всё увеличивающейся скорости расширения Вселенной и оценивается в 78 миллиардов световых лет. Вопрос о форме

Вселенной является важным открытым вопросом космологии. Говоря математическим языком, перед нами стоит проблема поиска такой трёхмерной фигуры, которая наилучшим образом представляет пространственный аспект Вселенной. Во-первых, неизвестно, является ли Вселенная пространственно плоской, то есть применимы ли законы Евклидовой геометрии на самых больших масштабах. В настоящее время большинство космологов полагают, что наблюдаемая Вселенная очень близка к пространственно плоской, с локальными складками, где массивные объекты искажают пространство-время. Это мнение было потверждено последними данными WMAP, рассматривающими «акустические осцилляции» в температурных отклонениях реликтового излучения. Во-вторых, неизвестно, является ли Вселенная множественно-соединённой. Согласно стандартной модели Большого взрыва, Вселенная не имеет пространственных границ, но может быть пространственно ограничена. Это может быть понято на примере двумерной аналогии: поверхность сферы не имеет границ, но имеет ограниченную площадь, причём кривизна сферы постоянна в третьем измерении. Если Вселенная действительно пространственно ограничена, то, двигаясь по прямой линии в любом направлении, можно попасть в отправную точку путешествия. Строго говоря, следует называть звёзды и галактики представлениями звёзд и галактик, поскольку возможно, что Вселенная множественно-соединена и достаточно мала (имея соответствующую, возможно сложную, геометрическую форму), чтобы мы могли видеть её всю одновременно и несколько раз в различных, возможно, всех направлениях. Если это так, то действительное количество физически различных звезд и галактик будет значительно меньше, чем насчитано в настоящее время. Хотя эта возможность не исключается совсем, результаты последних исследований реликтового излучения делают эту возможность маловероятной. В зависимости от средней плотности материи и энергии во Вселенной, она или будет продолжать вечное расширение, или будет гравитационно замедляться и, в конце концов, схлопнется обратно в себя в Большом сжатии. Данные, имеющиеся в настоящее время, позволяют утверждать, что не только материи и энергии недостаточно, чтобы вызвать сжатие, но и что расширение Вселенной происходит с ускорением. Другие идеи о судьбе Вселенной включают теории Большого разрыва, Большого замерзания и тепловой смерти Вселенной.

II.Метагалактики

        Так называют весь обозримый мир, изучаемый как единое целое. До 1924 года существование других галактик не било доказано, его лишь предполагали. После того, как Эдвин Хаббл при помощи самого большого в то время телескопа с диаметром зеркала 2,5 м обнаружил в галактике М31 (так обозначают туманность Андромеды), переменные звезды - цефеиды,сомнения в звездной природе объекта М31 отпали. К настоящему времени установлено, что число доступных наблюдению галактик, во всяком случае, не меньше миллиарда. Самые далекие из них находится на расстояниях около 12 млрд. световых лет. Их наблюдаемый теперь свет был испущен задолго до появления Земли.

В состав Метагалактики входят галактики и квазары, образующие группы и скопления. Всё пространство Метагалактики (часто называемой Вселенной) пронизано излучениями. Это, во-первых, инфракрасное, видимое, ультрафиолетовое и рентгеновское излучение галактик и квазаров, а также потоки нейтрино, и, во-вторых, реликтовое микроволновое и нейтринное излучения, возникновение которых связывают с Большим взрывом, положившим начало Метагалактики.

        Одно время полагали, что пространственное распределение галактик имеет ячеистый вид (первоначально сгущения галактик в стенках “ячеек” называли сверхскоплениями). Однако, скорее всего, клочковатая структура наблюдаемой Метагалактики - результат совместного действия двух факторов: 1 - случайных флуктуаций (колебаний) в распределении чисел групп и скоплений галактик в равных объёмах пространства и 2 - клочковатой структуры межзвёздного поглощающего вещества нашей Галактики. В отличие от звезд, изображения галактик на фотопластинках имеют низкую поверхностную яркость. Поэтому даже незначительное межзвёздное ослабление света (в газопылевых облаках) приводит к существенному искажению картины видимого распределения галактик даже вдали от Млечного Пути.

Если в Метагалактике выделять равные кубические объёмы с длиной ребра куба порядка 300 млн. световых лет, то число галактик внутри таких объемов окажется одинаковым в пределах случайных колебаний. Это свойство Метагалактики называют ее однородностью, предполагая дополнительно, что все характеристики вещества и излучения в этих объемах тоже одинаковы. В основе построения теоретических моделей Метагалактики лежит космологический принцип - предположение, что Вселенная однородна и изотропна. (Изотропность означает одинаковость свойств материи по всем направлениям).

Свойства галактик частично рассматривались выше на примере Галактики. Следует добавить, что кроме спиральных галактик существуют еще эллиптические (названные так по их виду в проекции на фотопластинку), в которых нет спиралей и, как правило, отсутствует пыль. Наконец, существует класс многочисленных неправильных галактик - относительно небольших размеров и неправильной формы (пример - Малое Магелланово Облако).

Квазары, упомянутые выше при перечислении известных видов объектов Метагалактики, вероятно являются ядрами зарождающихся галактик. Бурные процессы в этих ядрах сопровождаются излучением электромагнитной энергии в десятки и сотни раз более мощным, чем от самых больших “зрелых” галактик. Первоначально квазары были обнаружены как радиоисточники ничтожно малых угловых размеров. В оптической области спектра квазар выглядит белой звездочкой. Ни один квазар нельзя увидеть невооружённым глазом. Ещё одно свойство квазаров - все они удаляются от нас (в каком бы направлении не наблюдались) со скоростями в десятки и сотни тысяч километров в секунду.

Скопления галактик содержат сотни членов, группа - несколько десятков. Наша Галактика вместе с галактикой М31 (на расстоянии в два миллиона световых лет) входит в Местную группу галактик, включающую ещё три десятка сравнительно небольших галактик.

В 1929 году был опубликован закон Хаббла, согласно которому все галактики (за исключением нескольких самых близких) удаляются от нас: V=Hr . Здесь  - лучевая скорость в км/с,  расстояние, выраженное в мегапарсеках (мегапарсек равен 3,1x1019 км) и H=75 - постоянная, называемая постоянной Хаббла.

Судьба расширения Метагалактики зависит от средней плотности материи. Если она меньше некоторого критического значения, то гравитационное взаимодействие между скоплениями галактик не остановит расширение и оно не сменится сжатием. При плотности, большей критического значения, Метагалактика то сжимается, то снова расширяется. Данные наблюдений пока не позволяют сделать уверенный выбор между этими вариантами. Однако при исследовании скоростей галактик в скоплениях выясняется, что значения скоростей превосходят тот предел, при котором скоплению уже грозит быстрый распад. Следовательно, либо скопления галактик действительно распадаются (но тогда неясно, почему они не успели уже это сделать), либо там присутствуют какие-то скрытые, не наблюдаемые в оптической области спектра, массы. Допустив наличие таких масс, можно получить значение средней плотности Метагалактики примерно равное критическому. Однако существует ещё и третья возможность: члены скопления с наибольшими скоростями относительно его центра на самом деле скоплению не принадлежат и лишь случайно проецируются на него. Исключить такую возможность непросто, так как расстояния до галактик определяются с большими ошибками.

Самые далекие скопления движутся со скоростями, близкими к скорости света. Следствием этого (и эффекта Доплера) является наблюдаемое увеличение длины волны излучения. Далёкие галактики краснеют и тускнеют. Более того, с точки зрения земного наблюдателя замедляются все происходящие там физические процессы. Но точно так же выглядит и наша звёздная система (Галактика) с точки зрения жителей тех далеких галактик. Наконец, на еще больших взаимных расстояниях, определяющих так называемый “горизонт событий”, объекты оказываются недоступными для их взаимных наблюдений. Виною тому является скорость взаимного удаления, близкая к скорости света.

Время начала расширения можно грубо оценить, используя закон Хаббла. Любая галактика, удаляющаяся от нашей со скоростью преодолеет расстояние за время, равное r/Vr. Заменив величину Vr произведением Hr, после сокращения найдем, что искомое время равно 1/H. Ввиду того, что ответ не зависит от расстояния r, можно сделать вывод, что вещество, из которого сформировались скопления галактик, было выброшено из одного и того же места одновременно. Это произошло около 15-20 млрд. лет назад.

Информация о работе Вселенная. Метагалактики. Галактики