Планеты гиганты

Автор работы: Пользователь скрыл имя, 17 Июня 2013 в 17:48, реферат

Краткое описание

Планеты-гиганты находятся далеко от Солнца, и независимо от характера смены времен года на них всегда господствуют низкие температуры. На Юпитере вообще нет смены времен года, поскольку ось этой планеты почти перпендикулярна к плоскости ее орбиты. Своеобразно происходит смена времен года и на планете Уран, так как ось этой планеты наклонена к плоскости орбиты под углом 8°.
Планеты-гиганты отличаются большим числом спутников; у Юпитера к середине 2001 года их обнаружено уже 28, Сатурна - 30, Урана - 21 и только у Нептуна – 8, а уже к 1.08.2006г. у Юпитера найдено 63 спутника, у Сатурна – 55, у Урана 29,а у Нептуна-13. Замечательная особенность планет-гигантов - кольца, которые открыты не только у Сатурна, но и у Юпитера, Урана и Нептуна.

Содержание

Общая информация 3
Отличия от планет земной группы 4
Юпитер 4
Первый гигант 4
Атмосфера 5
Кольца 6
Магнитное поле 7
Спутники 7
Сатурн 9
Строение планеты и атмосфера 9
Магнитное поле 11
Кольца 11
Спутники 14
Уран 14
История открытия 14
Строение планеты 15
Особенности вращения 16
Кольца 16
Магнитное поле 17
Спутники 17
Нептун 18
История открытия 18
Строение планеты 19
Кольца 21
Магнитное поле 22
Спутники 22
Список литературы 24

Вложенные файлы: 1 файл

Реферат по астрономии на тему- «Планеты гиганты».doc

— 797.50 Кб (Скачать файл)

Кольца Сатурна имеют гораздо большую сложность и протяженность, чем у других планет. Хорошо видимые с Земли, эти кольца были обозначены символами A, B и C (самое слабое внутреннее кольцо C называют также "Креповым кольцом". Открыто В. Бондом в 1850г. Название дано позже У. Ласселлом и связано с внешним видом кольца). Кольца A и B разделены щелью Кассини (открыл Дж. Кассини в 1675г). Кроме того, имеется узкий, но заметный промежуток у внешнего края кольца A, носящий название щели Энке, или промежутка Энке (открыта И. Энке в 1837г). Внутри щели Энке видно узкое волнообразное колечко. В 1990г был открыт маленький спутник Пан, орбита которого также лежит внутри щели. "Вояджер-1" обнаружил вещество и внутри кольца C, которое было названо кольцом D. Вне кольца A лежат узкие разреженные кольца, известные как кольца E, F и G.

Предполагается, что частицы  колец состоят из смеси водяного льда и пыли и имеют размеры  от нескольких микрон до сотни метров. Однако их состав неоднороден, что видно  на полученных "Вояджером-1" изображениях, на которых имеются заметные изменения цвета. Эти изображения также показывают, что кольца состоят из тысяч узких близко расположенных "колечек". Многие детали наблюдаемых структур приписываются гравитационному воздействию спутников. Например, Пандора и Прометей играют как бы роль "пастухов" на границе кольца F, а щель Кассини расположена там, где мог бы обращаться спутник с периодом, составляющим половину периода Мимаса (этот факт можно считать примером явления резонанса). Кольца состоят из ледяных и (или) силикатных образований.

"Так узкое F-кольцо  от "расплывания" своим гравитационным  полем удерживает Пандора, а Прометей "следит" за состоянием внутреннего края этого же кольца. В 1980 и 1981 г. в окрестностях Сатурна пролетали американские исследовательские зонды Voyager 1 и 2, которые провели съемку колец Сатурна и его спутников. В частности, на основе этих снимков были рассчитаны орбиты Прометея и Пандоры. Однако наблюдения этих двух спутников в течение последних лет показали, что они находятся совсем не там, где должны были бы. Пандора "убежала" по своей орбите вперед почти на 20 градусов (это соответствует 160 тысячам км), а Прометей наоборот почти на столько же отстает от "графика".

Сравнивая информацию, переданную в 1981 году во время пролета около  Сатурна американской межпланетной автоматической станцией "Вояджер", с информацией, переданной "Кассини", специалисты расположенной в Пасадине (штат Калифорния) Лаборатории реактивного движения, откуда осуществляется управление "Кассини", в частности, установили, что за это время внутреннее кольцо D Сатурна стало существенно менее ярким и один его фрагмент почему-то на 200 км приблизился к поверхности планеты-гиганта. Причем последние данные с космического зонда Cassini показали, что у колец Сатурна есть своя атмосфера, независимая от планетарной. Пролетая невдалеке от этих 1,5 километровых сгустков водяного льда, скальных пород и пыли, зонд зафиксировал окружающую их оболочку, состоящую в основном из молекулярного кислорода. По результатам наблюдений за спутником Сатурна Энцеладом и последним более детальные изображения кольца E к июлю 2006 года был сделан вывод, что его полярные гейзеры являются основным источником подпитки кольца E Сатурна. Новые изображения, сделанные зондом в плоскости кольца Е, выявили его двойную структуру. Плотность вещества минимальна в его центре и максимальна по краям кольца, на расстояниях 0,5 - 1 км от центра. Этот эффект можно объяснить тем, что частицы в кольце движутся по наклонным орбитам с небольшими углами. Подобное явление наблюдается в разреженном кольце Юпитера и в пылевых кольцах главного пояса астероидов.

В принципе, возможная хаотичность движения Пандоры предсказывалась еще в 1982г, и теперь она подтвердилась. Астрономы из Лаборатории реактивного движения NASA провели расчеты гравитационных взаимодействий Пандоры и Прометея и пришли к выводу, что такое их поведение объясняется главным образом взаимным притяжением. Примерно раз в 28 дней они пролетают мимо друг друга на относительно небольшом расстоянии. Так как орбиты и у Пандоры и у Прометея немного эллиптичные, то расстояние между ними и, следовательно, сила гравитационного взаимодействия во время сближений меняется. Эти возмущения не имеют периодического характера, и спрогнозировать их практически невозможно, но за 20 лет из-за них Прометей и Пандора оказались совсем не там, где их ожидали увидеть. Тем не менее, общими усилиями Прометея и Пандора удерживают F-кольцо мелких обломков в компактном состоянии. Пандора толкает их внутрь в направлении к Сатурну, а Прометей выталкивает их наружу. Тем не менее, F-кольцо со временем очень медленно расширяется, так же как и остальные кольца. 

 

 

Спутники

Спутники названы в  честь героев античных мифов о  титанах и гигантах. Почти все  эти космические тела светлые. У  наиболее крупных спутников формируется  внутреннее каменистое ядро. Название «ледяные» спутники наиболее соответствует спутникам Сатурна. Некоторые из них имеют среднюю плотность 1,0 г/см3, что больше соответствует водяному льду. Плотность других несколько выше, но тоже невелика (исключение - Титан). До 1980г были известны десять спутников Сатурна. С тех пор было открыто еще несколько. Одна часть была обнаружена в результате телескопических наблюдений в 1980г, когда система колец была видна с ребра (и благодаря этому наблюдениям не мешал яркий свет), а другая - при пролетах АМС "Вояджер-1 и -2" в 1980 и 1981гг. После чего у планеты стало 17 спутников. В 1990г открыт 18-й спутник, а в 2000 году еще 12 небольших спутников, по всей видимости, захваченных планетой астероидов. В конце 2004г Гавайские астрономы обнаружили еще 12 новых спутников  неправильной формы диаметром от 3 до 7 километров. Версию о захвате подтверждает то, что 11 из 12 тел обращаются вокруг планеты в направлении, отличном от свойственного "основным" спутникам. Об этом же свидетельствует сильная вытянутость и исключительно большой - порядка 20 миллионов километров - диаметр орбит.

 

У р а н

История открытия

В течение многих веков  астрономы Земли знали только пять «блуждающих звезд» — планет. Уран виден как звездочка шестой звездной величины, поэтому с 1690 года астрономы несколько раз отображали его в качестве звезды на своих картах. 1781г был ознаменован открытием  Урана. Это произошло, когда английский астроном У. Гершель приступил к реализации грандиозной программы: составлению полного систематического обзора звездного неба. Систематические планомерные обзоры начал с 1775г по новому, предложенному им «методу черепков». Собственноручно изготовил рефлектор длиной почти 2 метра и диаметром главного зеркала в 20 см. И с помощью своего нового инструмента начал в 1775 году обзор всего неба, видимого из Бата. В перерывах между уроками музыки Гершель шлифовал металлические зеркала для телескопов, вечерами давал концерты, а ночи проводил за наблюдением звезд.

В ходе второго планомерного обзора 13 марта 1781г в 10 часов вечера вблизи одной из звезд созвездия Близнецов Гершель заметил любопытный объект, который явно не был звездой: его видимые размеры менялись в зависимости от увеличения телескопа, а главное, менялось его положение на небосводе. Гершель первоначально решил, что открыл новую комету (его доклад на заседании Королевского общества 26 апреля 1781 так и назывался — «Сообщение о комете»), но от кометной гипотезы вскоре пришлось отказаться. Через 4 месяца российский астроном А.И. Лексель доказал, что это планета. В благодарность Георгу III, назначившему Гершеля королевским астрономом, последний предложил назвать планету «Георгиева звезда», однако, чтобы не нарушать традиционной связи с мифологией, было принято название «Уран», предложенное И. Боде. Окончательно данное название было утверждено в 1850г.

Первые немногочисленные наблюдения еще не позволяли достаточно точно определить параметры орбиты новой планеты, но, во-первых, число этих наблюдений (в частности, в России, Франции и Германии) быстро увеличивалось, и, во-вторых, внимательное исследование каталогов прошлых наблюдений позволило убедиться, что планета неоднократно фиксировалась и прежде, но принималась за звезду, что также заметно увеличивало число данных. Так, например Джон Флемстид в 1690г катализировал Уран как звезду 34 Тельца.

В течение 30 лет после открытия Урана острота интереса к нему периодически падала, но только на время. Дело в том, что повышение точности наблюдений выявило загадочные аномалии в движении планеты: оно то «отставало» от расчетного, то начинало «опережать» его. Теоретическое объяснение этих аномалий привело к новым открытиям - обнаружению заурановых планет

.

Строение планеты

УРАН - седьмая от Солнца большая планета Солнечной системы, относится к планетам-гигантам. Уран достаточно ярок, так что при хороших условиях наблюдения его можно увидеть невооруженным глазом. С Земли даже в самый большой телескоп он кажется зеленоватым диском, почти лишенным деталей. В 1986г первый и пока единственный космический зонд "Вояджер-2" прошел недалеко от Урана и его спутников, передав на Землю их крупноплановые изображения. "Вояджером-2" были открыты десять небольших спутников Урана (к этому времени были уже известны пять больших спутников планеты - Миранда, Ариэль, Умбриэль, Титания и Оберон - название последним четырем дал У. Ласселл). Сравнительно недавно в 1997-1999гг открыты еще 6 небольших спутников планеты, в 2003г еще три, а в 2005г еще два.

Уран - один из четырех "газовых  гигантов" Солнечной системы. Его  экваториальный радиус почти в четыре раза, а масса в 14,6 раза больше, чем  у Земли. Сжатие поверхности составляет почти сороковую часть (586км). Относительно малая плотность типична для планет-гигантов: в процессе формирования из газово-пылевого протопланетного облака наиболее легкие компоненты (в первую очередь, водород и гелий) стали для них основным «строительным материалом», тогда как планеты земной группы включают заметную долю более тяжелых элементов. Уран - единственная планета-гигант Солнечной системы, которая не имеет мощного внутреннего источника тепла и излучает практически столько же, сколько получает от Солнца. Причина этого пока не известна.

Атмосфера Урана вращается  в ту же сторону, что и планета  в целом. В средних широтах  ветер дует в направлении движения планеты со скоростью около 150 м/сек, в экваториальной зоне ветер дует в обратном направлении со скоростью около 100 м/сек. Температура атмосферы максимальна около экватора, понижается на несколько градусов к средним широтам и снова растет к полюсу. Атмосфера Урана высотой 27,7км  состоит из молекулярного водорода (H2) - 82,5%; гелий (He) - 15,2% и метана (CH4) - 2,3%, а также небольшой доли веществ, являющихся результатом фотолиза метана: ацетилен C2H2, диацетилен C4H2, этилен C2H4 и этан C2H6, а также более сложные углеводороды, образующие тонкую надоблачную дымку. Молекулы метана активно поглощают красные лучи, что придает диску Урана голубовато-бирюзовый цвет.  На крупных планах планеты, полученных "Вояджером", Уран имеет "спокойный", почти лишенный деталей вид, хотя и имеются некоторые намеки на слабые полосы, параллельные экватору. Инструменты "Вояджера" обнаружили отчасти более холодную полосу между 15 и 40-ка градусами широты, где температура на 2-3 K ниже.

Основной слой облаков  на Уране расположен на уровне давления 2,4-3,4 атмосферы и состоит из замерзшего сероводорода H2S. Температура в этой области составляет около 100К (-173С). Ниже первого слоя облаков, на уровне давления 20-30 атмосфер, расположен второй облачный слой из гидросульфида аммония NH4SH. Еще глубже (на уровне давления около 50 атмосфер) находятся облака из водяного льда.

Температурный минимум (тропопауза) в атмосфере Урана составляет 52К (-221С) и достигается при давлении 0,1 атмосферы. При такой низкой температуре  конденсируются пары продуктов фотолиза метана (ацетилен, диацетилен и др.), образуя тонкую надоблачную дымку. Ранее считалось, что именно оптически толстая дымка скрывает разнообразные облачные детали на диске Урана, однако, согласно данным "Вояджера-2", оптическая толщина надоблачного воздуха составляет всего от 0,3 до 0,9, а поглощение солнечного света в основном обусловлено поглощением в линиях метана и молекулярного водорода, уширенных из-за частых взаимных столкновений молекул. Надоблачная атмосфера Урана чиста и прозрачна.

Выше тропопаузы лежит  стратосфера - область атмосферы, где  температура растет с высотой. На уровне давления 10-8 атмосфер температура составляет около 800К и дальше с высотой уже не меняется. Дневная освещенность на Уране соответствует земным сумеркам сразу после захода Солнца.  Недавние наблюдения позволили рассмотреть большие облака. Есть предположение о том, что эта возможность появилась в связи с сезонными эффектами, ведь как не трудно сообразить, зима от лета на Уране сильно разняться: целое полушарие зимой на несколько лет прячется от Солнца!

 

Особенности вращения

 У большинства планет ось вращения почти перпендикулярна плоскости эклиптики (эклиптика - видимый годовой путь Солнца на небесной сфере), но ось Урана почти параллельна этой плоскости. Причины “лежачего” обращения Урана неизвестны. Зато в действительности существует спор: какой из полюсов Урана — северный. Разговор этот отнюдь не подобен спору о палке с двумя концами и двумя началами. То, как же на самом деле сложилась такая ситуация с вращением Урана, очень многое значит в теории возникновения всей Солнечной системы, ведь почти все гипотезы подразумевают вращение планет в одну сторону. Если Уран образовался, лежа на боку, то это сильно не состыкуется с догадками о происхождении нашей планетной системы. Правда, сейчас все больше полагают, что такое положение Урана — результат столкновения с большим небесным телом, возможно крупным астероидом, на ранних стадиях формирования Урана.

 

 Кольца

 10 марта 1977г международная команда астрономов из США, Австралии, Индии и Южной Африки у Урана была открыта серия узких колец, лежащих в экваториальной плоскости во время покрытия Ураном звезды SAO 158687 8-й звездной величины. Кольца вызвали небольшое падение наблюдаемой яркости этой звезды непосредственно до и сразу после ее покрытия диском планеты. На представленных фотографиях в инфракрасных лучах сотрудниками Калифорнийского технологического института К. Метьюз и Г. Нойгебауэр определено наличие девяти темных колец (состоят из частиц, не покрытых льдом). Более поздние покрытия Беты Скорпиона и Сигмы Стрельца подтвердили полученный результат. Система колец в 1986г была сфотографирована "Вояджером-2", когда были обнаружены еще два кольца, а общее их количество достигло одиннадцати.

Камеры "Вояджера" показали, что девять основных колец погружены  в мелкую пыль. Ширина их всего 1–10 км, только самое широкое внешнее кольцо имеет размер 96 км. Кольца Урана практически черные: альбедо равно 0,015. Они состоят из каменистых частиц не крупнее нескольких метров в поперечнике (от 10см до 10м). Каждое кольцо движется практически как единое целое. Проблема устойчивости колец Урана остается пока неразрешенной. В 2003г с помощью телескопа Хаббл открыты еще два кольца и их стало 13. Кольца еще молодые, максимальная высота колец 4, 5, 6 над плоскостью экватора Урана достигает 24-46 км. Кольца тесно связаны с внутренними спутниками и быстро эволюционируют. В 2007г Земля пройдет через плоскость экватора Урана и его кольца будут видны с "ребра".

 

Магнитное поле

Магнитное поле планеты  слабее, чем у Земли (5/6) и со смещенным  центром на 55º относительно центра планеты. На уровне облаков напряженность магнитного поля равна 0,23 Гс. Но конфигурация этого магнитного поля очень сложная. Очень приближенно его можно считать дипольным, если ось диполя сместить от центра на 1/3 радиуса и наклонить к оси вращения на 60°. Компас на Уране не будет показывать на географический полюс. Магнитное поле делает возможным «полярные» сияния, наблюдающиеся в верхней части атмосферы. Имеет радиационные пояса слабее земных.

Информация о работе Планеты гиганты