Автор работы: Пользователь скрыл имя, 30 Июня 2014 в 13:13, реферат
Звёзды… Они восходили над динозаврами, над Великим Оледенением, над строящимися египетскими пирамидами. Одни и те же звёзды указывали путь финикийским мореплавателям и каравеллам Колумба, созерцали с высоты Столетнюю войну и взрыв ядерной бомбы в Хиросиме. Одним людям виделись в них глаза богов и сами боги, другими - серебряные гвозди, вбитые в хрустальный купол небес, третьим – отверстия, через которые струится небесный свет.
Постоянство и непознаваемость звёзд наши предки считали непременными условиями существования мира.
Введение 2
1.Рождение звёзд 3
1.1.Эволюция взглядов о рождении звёзд 3
1.2.Из чего образуются звёзды? 6
1.3.Жизнь черного облака 8
1.4.Облако становится звёздой 9
2.Основные звездные характеристики 10
2.1.Светимость и расстояние до звёзд 10
2.2.Спектры звёзд и их химический состав 11
2.3.Температура и масса звёзд 12
2.4.Связь основных звёздных величин 13
2.5.Молодые звёздные коллективы 13
3.Как устроена звезда и как она живёт 15
4.Взрывающиеся звёзды 18
4.1.Новые звёзды 20
4.2.Сверхновые звёзды 22
5.Конец жизненного пути звезды 25
5.1.Белые карлики, или будущее Солнца 25
5.2.Нейтронные звёзды 27
5.3.Чёрные дыры 28
Заключение 29
Литература 31
С началом эры рентгеновской астрономии (60-е гг.) выяснилось, что новые звезды наблюдаются не только в оптическом диапазоне. Так, в 70-е гг. были открыты рентгеновские барстеры – регулярно вспыхивающие источники рентгеновского излучения. Механизм вспышек здесь в целом такой же, как и у классических новых звезд. Разница в том, что второй компонент тесной двойной системы не белый карлик, а еще более компактная нейтронная звезда радиусом всего около 10 км.
Вещество нормальной звезды типа Солнца или красного карлика «срывается» приливными силами со стороны нейтронной звезды, образуя аккреционный диск. Газ попадает на поверхность нейтронной звезды, если она не обладает сильным магнитным полем, нагревается, и это приводит к повторяющимся термоядерным взрывам. А из-за большой компактности нейтронной звезды плотность вещества, достигшего поверхности, оказывается чудовищно высокой. Разогретый термоядерными взрывами газ излучает в основном энергичные рентгеновские кванты.
Наконец, нельзя не упомянуть еще об одном типе новых звезд - рентгеновских новых. Они вспыхивают в рентгеновском диапазоне на несколько месяцев, а затем полностью исчезают. Сейчас таких рентгеновских новых известно около десяти. Самое волнующее открытие последних лет, сделанное совместными усилиями астрономов России, Украины и других стран, состоит в том, что во всех рентгеновских новых компактными звездами являются, по-видимому. Черные дыры массой около 10 масс Солнца. Это хорошо согласуется с теорией относительности Эйнштейна, по которой масса черных дыр в звездных системах должна быть не менее 3-5 солнечных.
Так как черные дыры не имеют поверхности, на которой могло бы скапливаться аккрецируемое вещество, природа вспышки здесь уже иная, чем у классических новых звезд и рентгеновских барстеров. Как полагают, вспышка рентгеновской новой связана с внезапным гигантским энерговыделением в окружающем черную дыру аккреционном диске. Выяснение причины такого неустойчивого поведения дисков – одна из актуальных задач современной астрофизики.
Сверхновые звезды.
Сверхновые звезды – одно из самых грандиозных космических явлений. Коротко говоря, сверхновая – это настоящий взрыв звезды, когда большая часть ее массы (а иногда и вся) разлетается со скоростью до 10000 км/с, а остаток сжимается (коллапсирует) в сверхплотную нейтронную звезду или в черную дыру. Сверхновые играют важную роль в эволюции звезд. Они являются финалом жизни звезд массой более 8-10 солнечных, рождая нейтронные звезды и черные дыры и обогащая межзвездную среду тяжелыми химическими элементами. Все элементы тяжелее железа образовались в результате взаимодействия ядер более легких элементов и элементарных частиц при взрывах массивных звезд. Не здесь ли кроется разгадка извечной тяги человечества к звездам? Ведь в мельчайшей клеточке живой материи есть атомы железа, синтезированные при гибели какой-нибудь массивной звезды. И в этом смысле люди сродни снеговику из сказки Андерсена: он испытывал странную любовь к жаркой печке, потому что каркасом ему послужила кочерга…
По наблюдаемым характеристикам сверхновые принято разделять на две большие группы – сверхновые 1-го и 2-го типа. В спектрах сверхновых 1-го типа нет линий водорода; зависимость их блеска от времени (так называемая кривая блеска) примерно одинакова у всех звезд, как и светимость в максимуме блеска. Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр; формы их кривых блеска весьма разнообразны; блеск в максимуме сильно различается у разных сверхновых.
Ученые заметили, что в эллиптических галактиках (т.е. галактиках без спиральной структуры, с очень низким темпом звездообразования, состоящих в основном из маломассивных красных звезд) вспыхивают только сверхновые 1-го типа. В спиральных же галактиках, к числу которых принадлежит и наша Галактика - Млечный Путь, встречаются оба типа сверхновых. При этом представители 2-го типа концентрируются к спиральным рукавам, где идет активный процесс звездообразования и много молодых массивных звезд. Эти особенности наводят на мысль о различной природе двух типов сверхновых.
Сейчас надежно установлено, что при взрыве любой сверхновой освобождается огромное количество энергии – порядка 1046 Дж. Основная энергия взрыва уносится не фотонами, а нейтрино – быстрыми частицами с очень малой или вообще нулевой массой покоя. Нейтрино чрезвычайно слабо взаимодействуют с веществом, и для них недра звезды вполне прозрачны.
Законченной теории взрыва сверхновых с формированием компактного остатка и сбросом внешней оболочки пока не создано ввиду крайней сложности учета всех протекающих при этом физических процессов. Однако все данные говорят о том, что сверхновые 2-го типа вспыхивают в результате коллапса ядер массивных звёзд. На разных этапах жизни звезды в ядре происходили термоядерные реакции, при которых сначала водород превращается в гелий, затем гелий в углерод и так далее до образования элементов «железного пика» – железа, кобальта и никеля. Атомные ядра этих элементов имеют максимальную энергию связи в расчёте на одну частицу. Ясно, что присоединение новых частиц к атомному ядру, например, железа будет требовать значительных затрат энергии, а потому термоядерное горение и «останавливается» на элементах железного пика.
Что же заставляет центральные части звезды терять устойчивость и коллапсировать, как только железное ядро станет достаточно массивным (около 1,5 массы Солнца)? В настоящее время известны два основных фактора, приводящих к потере устойчивости и коллапсу. Во-первых, это «развал» ядер железа на 13 альфа-частиц (ядер гелия) с поглощением фотонов – так называемая фотодиссоциация железа. Во-вторых, нейтронизация вещества – захват электронов протонами с образованием нейтронов. Оба процесса становятся возможными при больших плотностях (свыше 1 т/см3), устанавливающихся в центре звезды в конце эволюции, и оба они эффективно снижают «упругость» вещества, которая фактически и противостоит сдавливающему действию сил тяготения. Как следствие, ядро теряет устойчивость и сжимается. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящих основную энергию, запасённую в коллапсирующем ядре.
В отличие от процесса катастрофического коллапса ядра, теоретически разработанного достаточно детально, сброс оболочки звезды (собственно взрыв) не так-то просто объяснить. Скорее всего существенную роль в этом процессе играют нейтрино.
Как свидетельствуют компьютерные расчёты, плотность вблизи ядра настолько высока, что даже слабо взаимодействующие с веществом нейтрино оказываются на какое-то время «запертыми» внешними слоями звезды. Но гравитационные силы притягивают оболочку к ядру, и складывается ситуация, похожая на ту, которая возникает при попытке налить более плотную жидкость, например воду, поверх менее плотной, скажем керосина или масла. (Из опыта хорошо известно, что лёгкая жидкость стремится «всплыть» из-под тяжелой – здесь проявляется так называемая неустойчивость Рэлея-Тейлора.) Этот механизм вызывает гигантские конвективные движения, и когда, в конце концов, импульс нейтрино передаётся внешней оболочке, она сбрасывается в окружающее пространство.
Возможно, именно нейтринные конвективные движения приводят к нарушению сферической симметрии взрыва сверхновой. Иными словами, появляется направление, вдоль которого преимущественно выбрасывается вещество, и тогда образующийся остаток получает импульс отдачи и начинает двигаться в пространстве по инерции со скоростью до 1000 км/с. столь большие пространственные скорости отмечены у молодых нейтронных звёзд – радиопульсаров.
Описанная схематическая картина взрыва сверхновой 2-го типа позволяет понять основные наблюдательные особенности этого явления. А теоретические предсказания, основанные на данной модели (особенно касающиеся полной энергии и спектра нейтральной вспышки), оказались в полном согласии с зарегистрированным 23 февраля 1987г. нейтринным импульсом, пришедшим от сверхновой в Большом Магеллановом Облаке.
Теперь несколько слов о сверхновых 1-го типа. Отсутствие свечения водорода в их спектрах говорит о том, что взрыв происходит в звёздах, лишенных водородной оболочки. Как сейчас полагают, это может быть взрыв белого карлика или результат коллапса звезды типа Вольфара-Райе (фактически это ядра массивных звёзд, богатые гелием, углеродом и кислородом).
Здесь рассказано лишь о наиболее мощных взрывах, происходящих во Вселенной и наблюдаемых в оптическом диапазоне. Поскольку в случае сверхновых звёзд, основная энергия взрыва уносится нейтрино, а не светом, исследование неба методами нейтринной астрономии имеет интереснейшие перспективы. Оно позволит в будущем «заглянуть» в самое «пекло» сверхновой, скрытое огромными толщами непрозрачного для света вещества. Ещё более удивительные открытия сулит гравитационно-волновая астрономия, которая в недалёком будущем поведает нам о грандиозных явлениях слияния двойных белых карликов, нейтронных звёзд и чёрных дыр.
Конец жизненного пути звезды
Большую часть своей жизни звезда находится на так называемой главной последовательности диаграммы цвет – светимость (диаграммы Герцшпрунга-Ресселла). Все остальные стадии эволюции звезды до образования компактного остатка занимают не более 10% от этого времени. Именно поэтому большинство звезд, наблюдаемых в нашей Галактике, - скромные красные карлики с массой Солнца или меньше. Дальнейшая судьба звезды полностью определяется её массой.
Каков же будет срок жизни звезды? Ответить на этот вопрос не представляет труда, если знать механизм выделения энергии в звезде. Для звезд главной последовательности это термоядерные реакции превращения водорода в гелий. Как известно из ядерной физики, освобождаемая при этом энергия равна примерно 0,1% от энергии покоя вещества Е=mс2. Здесь m- масса вещества, с- скорость света. Соотношение Е=mс2 было установлено Альбертом Эйнштейном в 1917 г.
Таким образом, полный запас термоядерной энергии в звезде составляет 0,001Мяс2, где Мя - масса ядра звезды, в котором и происходят термоядерные реакции.
Учитывая, что масса ядра звезды пропорциональна её полной массе (М), путём расчётов получаем приблизительное соотношение: продолжительность превращения водорода в гелий равна 10 М/L млрд. лет, где масса М и светимость L звезды выражены в массах и светимостях Солнца. Для звезд с массой, близкой к солнечной, L=М4 (это следует из наблюдений). Отсюда находим, что время их жизни 10/М3 млрд. лет.
Теперь ясно, что звезды с массой больше солнечной живут гораздо меньше Солнца, а время жизни самых массивных звезд составляет «всего» несколько миллионов лет! Для подавляющего же большинства звезд время жизни сравнимо или даже превышает возраст Вселенной (около 15 млрд. лет).
Теперь мы подошли к основному вопросу: во что превращаются звезды в конце жизни и как проявляют себя их остатки? Звезды разной массы приходят в итоге к одному из трех состояний: белые карлики, нейтронные звезды или черные дыры.
Белые карлики, или будущее Солнца
После «выгорания» термоядерного топлива в звезде, масса которой сравнима с массой Солнца, в центральной её части (ядре) плотность вещества становится настолько высокой, что свойства газа кардинально меняются. Подобный газ называется вырожденным, а звезды, из него состоящие вырожденными звездами.
После образования вырожденного ядра термоядерное горение продолжается в источнике вокруг него, имеющем форму шарового слоя. При этом звезда переходит в область красных гигантов на диаграмме Герцшпрунга-Ресселла. Оболочка красного гиганта достигает колоссальных размеров – в сотни радиусов Солнца – и за это время порядка 10-100 тыс. лет рассеивается в пространство. Сброшенная оболочка иногда видна как планетарная туманность. Оставшееся горячее ядро постепенно остывает и превращается в белый карлик, в котором силам гравитации противостоит давление вырожденного электронного газа, обеспечивая тем самым устойчивость звезды. При массе около солнечной радиус белого карлика составляет всего несколько тысяч километров. Средняя плотность вещества в нём часто превышает 109 кг\м3 (тонну на кубический сантиметр!).
Ядерные реакции внутри белого карлика не идут. А свечение происходит за счёт медленного остывания. Основной запас тепловой энергии белого карлика содержится в колебательных движениях ионов, которые при температуре ниже 15 тыс. Кельвинов образуют кристаллическую решетку. Образно говоря, белые карлики - это гигантские горячие кристаллы. Постепенно температура поверхности белого карлика уменьшается и звезда перестаёт быть белой (по цвету) – это скорее уже бурый или коричневый карлик.
Масса белых карликов не может превышать некоторого значения – это так называемый предел Чандрасекара (по имени американского астрофизика, индийца по происхождению, Субрахманьяна Чандрасекара), он равен примерно 1,4 массы Солнца. Если масса звезды больше, давление вырожденных электронов не может противостоять силам гравитации и за считанные секунды происходит катастрофическое сжатие белого карлика – коллапс. В ходе коллапса плотность резко растёт, протоны объединяются с вырожденными электронами и образуют нейтроны (это называется нейтронизацией вещества), а освобождаемую гравитационную энергию уносят в основном нейтрино. Чем же заканчивается этот процесс? По современным представлениям, коллапс может либо остановиться при достижении плотностей порядка 1017 кг\м3, когда нейтроны сами становятся вырожденными, - и тогда образуется нейтронная звезда; либо выделяемая энергия полностью разрушает белый карлик – и коллапс по сути дела превращается во взрыв.
Нейтронные звезды
Большинство нейтронных звезд образуются при коллапсе ядер звезд массой более 10 солнечных. Их рождение сопровождается грандиозным небесным явлением – вспышкой сверхновой звезды. Зная из наблюдений, что вспышки сверхновых в нормальной галактике происходят примерно раз в 25 лет, легко вычислить, что за время существования нашей Галактики (10-15 млрд. лет) в ней должно было образоваться несколько сот миллионов нейтронных звезд! Как же они должны проявлять себя?
Молодые нейтронные звёзды быстро вращаются (периоды вращения измеряются миллисекундами) и обладают сильным магнитным полем. Вращение вместе с магнитным полем создают мощные электрические поля, которые вырывают заряженные частицы из твёрдой поверхности нейтронной звезды и ускоряют их до очень высоких энергий. Эти частицы излучают радиоволны.
С потерей энергии вращение нейтронной звезды тормозится, электрический потенциал, создаваемый магнитным полем, падает. При некотором его значении заряженные частицы перестают рождаться и радиопульсар «затухает». Это происходит за время около 10 млн. лет, поэтому действующих пульсаров в Галактике должно быть несколько сот тысяч. В настоящее время наблюдается примерно 700 пульсаров.