Контрольная работа по "Безопасности труда"

Автор работы: Пользователь скрыл имя, 06 Марта 2013 в 18:12, контрольная работа

Краткое описание

Основными направлениями работ по профилактике возникновения аварий на РОО является создание высоконадежной техники и технологий, бездефектное изготовление оборудования, качественное выполнение монтажа и строительство, строгое соблюдение технологий и правил эксплуатации. Эффективным путем повышения безопасности ядерной энергетики является создание реакторов повышенной устойчивости и высоконадежных систем технологической безопасности. Наиболее перспективными являются высокотемпературные газовые реакторы (ВТГР), способные противостоять отказам оборудования, технологическим и эксплуатационным нарушениям, а также применение быстродействующих средств защиты, в том числе автоматических отсечных устройств, систем взрывопредупреждения и локализации аварии.

Содержание

Причины производственного травматизма и профзаболеваний.
Радиационное излучение, источники, действия на человека, нормирование, контроль, методы и средства защиты.
Задача.
Список использованной литературы.

Вложенные файлы: 1 файл

Контрольная Безопасность труда.doc

— 161.50 Кб (Скачать файл)

При перелете из Нью-Йорка  в Париж пассажир обычного турбореактивного самолета получает дозу около 50 мкЗв, а  пассажир сверхзвукового самолета - на 20% меньше, хотя подвергается более  интенсивному облучению. Это объясняется  тем, что во втором случае перелет занимает гораздо меньше времени. Всего за счет использования воздушного транспорта человечество получает в год коллективную эффективную эквивалентную дозу около 2000 чел./Зв.

Земная радиация

Основные радиоактивные  изотопы, встречающиеся в горных породах Земли, - это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232 - долгоживущих изотопов, включившихся в состав Земли с самого ее рождения.

Разумеется, уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентраций радионуклидов в том или ином участке земной коры. В местах проживания основной массы населения они примерно одного порядка.

 

 

Внутреннее  облучение 

В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом.

Совсем небольшая часть  этой дозы приходится на радиоактивные  изотопы типа углерода-14 и трития, которые образуются под воздействием космической радиации. Все остальное поступает от источников земного происхождения. В среднем человек получает около 180 микрозивертов в год за счет калия-40, который усваивается организмом вместе с нерадиоактивными изотопами калия, необходимыми для жизнедеятельности организма. Однако значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в меньшей степени от радионуклидов ряда тория-232.

Некоторые из них, например нуклиды, свинца-210 и полония-210, поступают в организм с пищей. 0ни концентрируются в рыбе и моллюсках, поэтому люди, потребляющие много рыбы и других даров моря, могут получить относительно высокие дозы облучения.

Радон

Лишь недавно стало  известно, что наиболее весомым из всех естественных источников радиации является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раза тяжелее воздуха) радон. Он вместе со своими дочерними продуктами радиоактивного распада ответствен примерно за 3/4 годовой индивидуальной эффективной эквивалентной дозы облучения, получаемой населением от земных источников радиации, и примерно за половину этой дозы от всех естественных источников радиации. Большую часть этой дозы человек получает от радионуклидов, попадающих в его организм вместе с вдыхаемым воздухом, особенно в непроветриваемых помещениях.

В природе радон встречается  в двух основных формах: в виде радона-222, члена радиоактивного ряда, образуемого  продуктами распада урана-238, и в  виде радона-220, члена радиоактивного ряда тория-232. По-видимому, радон-222 примерно в 20 раз важнее, чем радон-220 (имеется в виду вклад в суммарную дозу облучения). Вообще говоря, большая часть облучения исходит от дочерних продуктов распада радона, а не от самого радона.

Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для разных точек земного шара. Основную часть дозы обличения от радона человек получает, находясь в закрытом, непроветриваемом помещении. В зонах с умеренным климатом концентрация радона в закрытых помещениях в среднем примерно в 8 раз выше, чем в наружном воздухе.

Радон концентрируется  в воздухе внутри помещении лишь тогда, когда они в достаточной  мере изолированы от внешней среды. Поступает, просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из материалов, использованных в конструкции дома. В результате в помещении могут возникать довольно высокие уровни радиации, особенно если дом стоит на грунте с относительно повышенным содержанием радионуклидов или если при его постройке использовали материалы с повышенной радиоактивностью

Самые распространенные строительные материалы - дерево, кирпич и бетон - выделяют относительно немного  радона. Гораздо большей удельной радиоактивностью обладают гранит и пемза, используемые в качестве строительных материалов.

Среди других промышленных отходов с высокой радиоактивностью, применявшихся в строительстве, следует назвать кирпич из красной  глины - отхода производства алюминия, доменный шлак - отход черной металлургии и зольную пыль, образующуюся при сжигании угля.

 

 

Другие источники  радиации

Уголь, подобно большинству  других природных материалов, содержит радионуклиды. Последние, извлеченные  вместе с углем из недр земли, после  сжигания угля попадают в окружающую среду, где могут служить источником облучения людей.

Из печек и каминов  всего мира вылетает в атмосферу  зольной пыли, возможно, не меньше, чем  из труб электростанций. Кроме того, в отличие от большинства электростанций жилые дома имеют относительно невысокие трубы и расположены обычно в центре населенных пунктов, поэтому, гораздо большая часть загрязнений попадает непосредственно на людей.

Еще один источник облучения  населения - термальные водоемы. Некоторые  страны эксплуатируют подземные резервуары пара и горячей воды для производства электроэнергии и отопления домов;

Фосфаты используются главным  образом для производства удобрений. Большинство разрабатываемых в  настоящее время фосфатных месторождений  содержит уран, присутствующий там, в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон, да и сами удобрения радиоактивны, и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры.

За последние несколько  десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, поиска полезных ископаемых. Все это приводит к увеличению дозы облучения, как отдельных людей, так и населения Земли в целом.

Индивидуальные дозы, получаемые разными людьми от искусственных  источников радиации, сильно различаются. В большинстве случаев эти  дозы весьма невелики, но иногда облучение  за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных.

Как правило, для техногенных  источников радиации, упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Кроме того, порождаемое ими излучение обычно легче контролировать, хотя облучение, связанное с радиоактивными осадками от ядерных взрывов, почти так же невозможно контролировать, как и облучение, обусловленное космическими лучами или земными источниками.

Источники, использующиеся в медицине

В настоящее время основной вклад в дозу, получаемую человеком от техногенных источников радиации, вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Во многих странах этот источник ответствен практически за всю дозу, получаемую от техногенных источников радиации.

Одним из самых распространенных медицинских приборов является рентгеновский  аппарат. Как ни парадоксально, но одним  из основных способов борьбы с раком  является лучевая терапия.

В принципе, облучение  в медицине направлено на исцеление  больного. Однако нередко дозы оказываются  неоправданно высокими: дозы, получаемые от облучения в медицинских целях, составляют значительную часть суммарной  дозы облучения от техногенных источников.

В настоящее время широко применяется компьютерная томография.

Ядерные взрывы

За последние 40 лет  каждый из нас подвергался облучению  от радиоактивных осадков, которые  образовались в результате ядерных  взрывов.

Максимум этих испытании приходится на два периода: первый - на 1954-1958 годы, когда взрывы проводили Великобритания, США и СССР, и второй, более значительный, - на 1961-1962 годы, когда их проводили в основном Соединенные Штаты и Советский Союз. Во время первого периода большую часть испытаний провели США, во время второго-СССР.

Эти страны в 1963 году подписали Договор  об ограничении испытаний ядерного оружия, обязывающий не испытывать его в атмосфере, под водой  и в космосе. С тех пор лишь Франция и Китай провели серию  ядерных взрывов в атмосфере, причем мощность взрывов была существенно меньше, а сами испытания проводились реже (последнее из них - в 1980 году). Подземные испытания проводятся до сих пор, но они обычно не сопровождаются образованием радиоактивных осадков.

Часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается в тропосфере (самом нижнем слое атмосферы), подхватывается ветром и перемещается на большие расстояния, оставаясь примерно на одной и той же широте. Находясь в воздухе в среднем около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако большая часть радиоактивного материала выбрасывается в стратосферу (следующий слой атмосферы, лежащий на высоте 10-50 км), где он остается многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара.

Радиоактивные осадки содержат несколько  сотен различных радионуклидов, однако большинство из них имеет  ничтожную концентрацию или быстро распадается; основной вклад в облучение  человека дает лишь небольшое число радионуклидов. Вклад в ожидаемую коллективную эффективную эквивалентную дозу облучения населения от ядерных взрывов, превышающий 1 %, дают только четыре радионуклида. Это углерод-14, цезий-137, цирконий-95 и стронций-90.

Атомная энергетика

Источником облучения, вокруг которого ведутся наиболее интенсивные споры, являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики.

Атомные электростанции являются лишь частью ядерного топливного цикла, который  начинается с добычи и обогащения урановой руды. Следующий этап-производство ядерного топлива. Отработанное в АЭС  ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчивается цикл, как правило, захоронением радиоактивных отходов.

На каждой стадии ядерного топливного цикла в окружающую среду попадают радиоактивные вещества.

Доза облучения от ядерного реактора зависит от времени и расстояния. Чем дальше человек живет от атомной электростанции, тем меньшую дозу он получает. Несмотря на это, наряду с АЭС, расположенными в отдаленных районах, имеются и такие, которые находятся недалеко от крупных населенных пунктов. Каждый реактор выбрасывает в окружающую среду целый ряд радионуклидов с разными периодами полураспада. Большинство радионуклидов распадается быстро и поэтому имеет лишь местное значение. Однако некоторые из них живут достаточно долго и могут распространяться на значительные расстояния, а определенная часть изотопов остается в окружающей среде практически бесконечно.

Примерно половина всей урановой руды добывается открытым способом, а половина - шахтным. И рудники, и обогатительные фабрики служат источником загрязнения окружающей среды радиоактивными веществами. Обогатительные же фабрики создают проблему долговременного загрязнения: в процессе переработки руды образуется огромное количество отходов - «хвостов».

Эти отходы будут оставаться радиоактивными в течение миллионов лет. Таким образом, отходы являются главным долгоживущим источником облучения населения, связанным с атомной энергетикой. Однако их вклад в облучение можно значительно уменьшить, если отвалы заасфальтировать или покрыть их поливинилхлоридом. Конечно, покрытия необходимо будет регулярно менять.

До сих пор мы совсем не касались проблем, связанных с последней  стадией ядерного топливного цикла - захоронением высокоактивных отходов  АЭС. Эти проблемы находятся в  ведении правительств соответствующих стран. В некоторых странах ведутся исследования по отверждению отходов с целью последующего их захоронения в геологических стабильных районах на суше, на дне океана или в расположенных под ними пластах. Предполагается, что захороненные таким образом радиоактивные отходы не будут источником облучения населения в обозримом будущем.

90% всей дозы облучения, обусловленной  короткоживущими изотопами, население  получает в течение года после  выброса, 98 %-в течение 5 лет. Почти  вся доза приходится на людей, живущих не далее нескольких тысяч километров от АЭС.

Все приведенные выше цифры, конечно, получены в предположении, что ядерные  реакторы работают нормально. Однако количество радиоактивных веществ, поступивших  в окружающую среду при авариях, может оказаться гораздо больше.

Профессиональное  облучение 

Самые большие дозы облучения, источником которого являются объекты  атомной промышленности, получают люди, которые на них работают. Профессиональные дозы почти повсеместно являются самыми большими из всех видов доз.

Оценки показывают, что доза, которую  получают рабочие урановых рудников и обогатительных фабрик, составляет в среднем 1 чел./Зв на каждый гигаватт-год  электроэнергии. Примерно 90% этой дозы приходится на долю рудников, причем персонал, работающий в шахтах, подвергается большему облучению. Коллективная эквивалентная доза от заводов, на которых получают ядерное топливо, также составляет 1 чел./Зв на гигаватт-год.

Дозы, которые получают люди, занятые  научно-исследовательской работой в области ядерной физики и энергетики, очень сильно различаются для разных предприятий.

Информация о работе Контрольная работа по "Безопасности труда"