Автор работы: Пользователь скрыл имя, 31 Марта 2014 в 14:01, контрольная работа
Отравляющими веществами (ОВ) называются ядовитые соединения, применяемые для снаряжения химических боеприпасов. Отравляющие вещества являются главными компонентами химического оружия.
Химическое оружие - это оружие массового поражения, действие которого основано на токсических свойствах отравляющих веществ и средства их применения: снаряды, ракеты, мины, авиационные бомбы, ВАПы (выливные авиационные приборы). Химическое оружие, наряду с ядерным и биологическим, относится к оружию массового поражения (ОМП). Применение химического оружия несколько раз запрещалось различными международными договоренностями.
Основная причина расстройств
многих функций организма при отравлении
пульмонотоксикантами –
Уже на ранних этапах развития токсического отека легких повышается возбудимость блуждающего нерва. Это приводит к тому, что меньшее, по сравнению с обычным, растяжение альвеол при вдохе служит сигналом к прекращению вдоха и началу выдоха (рефлекс Геринга-Брейера). Дыхание при этом учащается, но уменьшается его глубина, что ведет к уменьшению альвеолярной вентиляции. Снижается выделение двуокиси углерода из организма и поступление кислорода в кровь - возникает гипоксемия.
Снижение парциального давления кислорода и некоторое повышение парциального давления СО2 в крови приводит к дальнейшему нарастанию одышки (реакция с сосудистых рефлексогенных зон), но, несмотря на ее компенсаторный характер, гипоксемия не только не уменьшается, но напротив, усиливается. Причина явления состоит в том, что хотя в условиях рефлекторной одышки минутный объем дыхания и сохранен (9000 мл), альвеолярная вентиляция - снижена.
С развитием отека легких кислородная недостаточность нарастает. Этому способствует все усиливающееся нарушение газообмена (затруднение диффузии кислорода через увеличивающийся слой отечной жидкости), а в тяжелых случаях - расстройство гемодинамики (вплоть до коллапса). Развивающиеся метаболические нарушения (ацидоз, за счет накопления недоокисленных продуктов обмена) ухудшают процесс утилизации кислорода тканями.
Таким образом, развивающееся
при поражении удушающими веществами
кислородное голодание может быть охарактеризовано,
как гипоксия смешанного типа: гипоксическая (нарушение
внешнего дыхания), циркуляторная (нарушение
гемодинамики), тканевая (
Нарушение деятельности сердечно-сосудистой системы.
Сердечно-сосудистая система, наряду с дыхательной, претерпевает наиболее тяжелые изменения. Уже в раннем периоде развивается брадикардия (возбуждение блуждающего нерва). По мере нарастания гипоксемии и гиперкапнии развивается тахикардия и повышается тонус периферических сосудов (реакция компенсации). Однако при дальнейшем нарастании гипоксии и ацидоза сократительная способность миокарда снижается, капилляры расширяются, в них депонируется кровь. Артериальное давление падает. Одновременно усиливается проницаемость сосудистой стенки, что приводит к отеку тканей.
Осложнениями отека легких являются бактериальная пневмония, формирование легочного инфильтрата, тромбоэмболия магистральных сосудов.
Диагностика поражения ОВТВ удушающего действия.
Первым шагом на пути выявления лиц, подвергшихся острому воздействию токсикантов, является констатация самого факта воздействия. В тех случаях, когда этот факт очевиден (в лицо солдату выброшена струя токсического агента), процедура носит формальный характер (регистрация случая). Однако значительно чаще это не простая задача.
Поскольку транзиторные токсические реакции быстро исчезают, а стойкие признаки острого ингаляционного поражения формируются постепенно, диагностика развивающейся патологии в ранние сроки представляет известную сложность. Рентгенографические изменения в легких в первые часы после воздействия ОВТВ отсутствуют; содержание газов в крови - в пределах нормы. Существуют косвенные признаки, позволяющие предположить возможность поражения пульмонотоксикантами. К их числу относятся: ожог кожи лица, слюнотечение, затруднение дыхания, кашель и т.д. Лиц, доставленных из зоны пожара (особенно при возгорании синтетических материалов) или взрыва в закрытом помещении всегда следует рассматривать как потенциально отравленных. Особое внимание следует уделять пострадавшим, находящимся в бессознательном состоянии, поскольку вероятность получить тяжелое отравление у них выше.
Медицинская защита.
Медицинская защита от поражения веществами удушающего действия предполагает проведения целого комплекса мероприятий:
- использование индивидуальных технических средств защиты (средства защиты органов дыхания) в зоне химического заражения.
- своевременное выявление
- применение средств
- подготовка и проведение эвакуации.
Фосген
Фосген (дихлорангидрид угольной кислоты) - химическое вещество с формулой СОCl2, бесцветный газ с запахом прелого сена или гнилых яблок, в малых концентрациях обладает приятным фруктовым запахом. Замерзает фосген при температуре около - 118°С, кипит при температуре 8,2°С. Пары фосгена в 2,48 раза тяжелее воздуха. Плохо растворим в воде, хорошо — в органических растворителях.
Впервые фосген получил Деви в 1812 году, наблюдавшим взаимодействие хлора с оксидом углерода на солнечном свету. Применен впервые в 1915 году Германией. В настоящее время запасы фосгена, хранящиеся на армейских складах, подлежат уничтожению. Однако фосген и его производные являются важным исходным продуктом синтеза пластмасс, синтетических волокон, краителей.
Фосген обладает удушающим действием со скрытым периодом 4 - 6 часов. Запах фосгена ощутим в концентрации 0,004 мг/л, однако на обонятельный нерв фосген влияет так, что в дальнейшем обоняние притупляется и перестают ощущаться даже более высокие концентрации. Смертельными являются концентрации паров фосгена в воздухе 3,0 миллиграмма в литре при дыхании в течение 2 мин., меньшие концентрации (0,5-0,8 мг/л) приводят к тяжелым отравлениям. Концентрация 5 мг/л смертельна уже через 2-3 сек. Фосген обладает кумулятивными свойствами (можно получить смертельное поражение при длительном вдыхании воздуха, содержащего малые концентрации паров фосгена).
В тяжелых случаях течение отравления фосгеном условно может быть разделено на четыре периода: воздействия, скрытый, развития токсического отека легких, разрешения отека.
В период воздействия выраженность проявлений интоксикации зависит от концентрации фосгена. В небольшой концентрации в момент контакта явлений раздражения обычно не вызывает. С увеличением концентрации появляются неприятные ощущения в носоглотке и за грудиной, затруднение дыхания, слюнотечение, кашель. Эти явления исчезают при прекращении контакта с ним.
Скрытый период характеризуется субъективным ощущением благополучия. Продолжительность его в среднем составляет 4-6 ч, но определяется тяжестью интоксикации и зависит от общего состояния организма в момент отравления, поэтому возможны отклонения в обе стороны (1-24 ч).
Основные проявления интоксикации отмечаются в третьем периоде –токсического отека легких, когда отечная жидкость выходит в альвеолы. Усиливается одышка (до 50-60 дыхательных актов в минуту), носящая инспираторный характер. Появляется кашель, постепенно усиливающийся и сопровождающийся выделением изо рта и носа большого количества пенистой мокроты. По мере нарастания отека жидкость заполняет не только альвеолы, но также бронхиолы и бронхи. Максимального развития отек достигает к концу первых суток.
При благоприятном течении интоксикации с 3-4-го дня наступает период разрешения отека. Однако на этом фоне возможно присоединение вторичной инфекции и развитие пневмонии, что и может явиться причиной смерти в более поздние сроки (8-15-е сутки).
При вдыхании фосгена в малых концентрациях отек легких не развивается. Начальные проявления интоксикации включают головокружение, слабость, кашель, чувство сдавления в груди и диспное. Возможно развитие слезотечения, тошноты, головной боли. Эти явления исчезают в течение короткого времени после воздействия.
Механизм токсического действия.
Попадая в дыхательную систему, вещество слабо задерживается в дыхательных путях вследствие низкой гидрофильности. Поражение легких является следствием прямого повреждения веществом клеточных структур аэрогематического барьера. По механизму токсического действия фосген относится к алкилирующим агентам, способным связываться с SH-, NH2- и СОО- группами биологических молекул. Взаимодействуя с альвеолоцитами II типа, токсикант повреждает их, угнетая активность ферментов синтеза фосфолипидов и сурфактанта. Поскольку период полуобмена сурфактанта у человека достаточно продолжителен (12-24 ч), увеличение силы поверхностного натяжения в альвеолах и их «спадание», обнаруживается только спустя несколько часов после ингаляции вещества. Проникая далее по градиенту концентраций вглубь альвеолярно-капиллярного барьера, фосген снижает жизнеспособность и метаболическую активность эндотелиальных клеток капилляров легких.
Оксиды азота
Оксиды азота (закись – N2O; окись - NO; трехокись - N2O3; двуокись - NO2; четырехокись - N2O4; пятиокись - N2O5) входят в состав так называемых взрывных и пороховых газов, образующихся при стрельбе, взрывах, запуске ракет, оснащенных двигателями, работающими на твердом ракетном топливе. При этом содержание оксидов азота в воздухе может возрастать до 20-40%, что приводит к интоксикации, характер которой определяется составом взрывных газов. Наибольшее значение, с точки зрения опасности воздействия на человека, имеют диоксид (NO2) и монооксид (NO) азота.
При ингаляции оксиды азота представляют опасность уже в концентрации 0,1 г/м3, а при концентрации 0,5-0,7 г/м3возможно развитие отека легких. Порог раздражающего действия при 4-х минутной экспозиции составляет 0,15 г/м3, при 15-ти минутной -0,09 г/м3.
Наиболее типичным для оксидов азота является удушающее действие, приводящее к развитию отека легких. В основе действия лежит способность веществ активировать свободнорадикальные процессы в клетках, формирующих альвеолярно-капиллярный барьер. В результате активируется перекисное окисление липидов и повреждаются биологические мембраны клеток, формирующих альвеолярно-капиллярный барьер. Атаке подвергаются и другие макромолекулы - инициируются процессы, лежащие в основе цитотоксичности.
Вдыхание диоксида азота в очень высоких концентрациях приводит к быстрому развитию нитритного шока, часто заканчивающегося гибелью пострадавших. В основе нитритного шока лежит массированное образование в крови метгемоглобина и химический ожог легких. При ингаляции монооксида азота, происходит образование нитрозилгемоглобина с последующим превращением его также в метгемоглобин. При высоких концентрациях роль метгемоглобинообразования в механизме развития патологии возрастает.
В случае преобладания в газовой смеси монооксида азота развивается так называемая обратимая форма интоксикации. Поражение сопровождается одышкой, рвотой, падением артериального давления за счет сосудорасширяющего действия NO. Эти явления быстро проходят после удаления пораженного из зараженной атмосферы.
Таким образом, интоксикация оксидами азота, в зависимости от условий (концентрация и соотношение веществ во вдыхаемом воздухе), может развиваться либо по удушающему (токсический отек легких), либо по шокоподобному (метгемоглобинообразование, ожог легких), либо по обратимому (падение АД) типу.
Хлор
Хлор был первым веществом, примененным на войне в качестве отравляющего вещества. 22 апреля 1915 г близ города Ипр германские части выпустили его из баллонов (около 70 т), направив поток газа, движимый ветром, на позиции французских войск. Эта химическая атака стала причиной поражения более чем 7000 человек. Позже вещество широко применялось на фронтах 1-й Мировой войны и потому клиника поражения хорошо изучена.
В настоящее время хлор как ОВ не рассматривается. Тем не менее, миллионы тонн вещества ежегодно получаются и используются для технических нужд: очистки воды (2 - 6%), отбеливания целлюлозы и тканей (до 15%), химического синтеза (около 65%) и т.д. Хлор является наиболее частой причиной несчастных случаев на производстве.
Хлор - газ желтовато-зеленого цвета с характерным удушливым запахом, примерно в 2,5 раза тяжелее воздуха. Распространяясь в зараженной атмосфере, он следует рельефу местности, затекая в ямы и укрытия. Хорошо адсорбируется активированным углем. Химически очень активен. При растворении в воде взаимодействует с ней, образуя хлористоводородную и хлорноватистую кислоту. Нейтрализуется хлор водным раствором гипосульфита. Он сохраняется и транспортируется в сжиженном виде под повышенным давлением.
Уже в минимальных концентрациях (0,01 г/м3) хлор раздражает дыхательные пути, действуя в более высоких концентрациях (более 0,1 г/м3), вызывает тяжелое поражение. Пребывание в атмосфере, содержащей хлор в концентрациях 1,5-2 г/м3, сопровождается быстрым (через 2 - 4 часа) развитием отека легких.
Информация о работе Токсические химические вещества удушающего действия