Биохимические и молекулярные основы наследственности

Автор работы: Пользователь скрыл имя, 23 Марта 2015 в 19:38, реферат

Краткое описание

Важное биологическое значение нуклеиновых кислот состоит в том, что они осуществляют хранение и передачу наследственной информации, а также определяют синтез нужных белков в клетке и его регуляцию. По химическому строению нуклеиновые кислоты представляют собой линейные (неразветвленные) цепочки, составленные из остатков большого числа нуклеотидов указанных выше типов.

Вложенные файлы: 1 файл

ГОУСПОНО.docx

— 49.54 Кб (Скачать файл)

Структура генов у бактеориофагов и вирусов в основном схожа с бактериями, но более усложнена и сопряжена с геномом хозяев. Например, у фагов и вирусов обнаружено перекрывание генов, а полная зависимость вирусов эукариот от метаболизма клетки-хозяина привела к появлению экзон-интронной структуры генов.

Эукариотические гены, в отличие от бактериальных, имеют прерывистое мозаичное строение. Кодирующие последовательности (экзоны) перемежаются с некодирующими (интронами). Экзон [от англ. ex(pressi)on - выражение, выразительность] - участок гена, несущий информацию о первичной структуре белка. В гене экзоны разделены некодирующими участками - интронами. Интрон (от лат. inter - между) - участок гена, не несущий информацию о первичной структуре белка и расположенный между кодирующими участками - экзонами. В результате структурные гены эукариот имеют более длинную нуклеотидную последовательность, чем соответствующая зрелая иРНК, последовательность нуклеотидов в которой соответствует экзонам. В процессе транскрипции информация о гене списывается с ДНК на промежуточную иРНК, состоящую из экзонов и интронов. Затем специфические ферменты - рестриктазы - разрезают эту про-иРНК по границам экзон-интрон, после чего экзонные участки ферментативно соединяются вместе, образуя зрелую иРНК (так называемый сплайсинг). Количество интронов может варьировать в разных генах от нуля до многих десятков, а длина - от нескольких пар оснований до нескольких тысяч.

Ген может кодировать различные РНК-продукты путем изменения инициирующих и терминирующих кодонов, а также альтернативного сплайсинга. Альтернативная экспрессия гена осуществляется и путем использования различных сочетаний экзонов в зрелой иРНК, причем полипептиды, синтезированные на таких иРНК, будут различаться как по количеству аминокислотных остатков, так и по их составу.

Наряду со структурными и регуляторными генами обнаружены участки повторяющихся нуклеотидных последовательностей, функции которых изучены недостаточно, а также мигрирующие элементы (мобильные гены), способные перемещаться по геному. Найдены также так называемые псевдогены у эукариот, которые представляют собой копии

известных генов, расположенные в других частях генома и лишенные интронов или инактивированные мутациями.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Реализация генетической информации

 

Хранящаяся в ДНК генетическая информация реализуется в процессе биосинтеза белка.

ДНК сосредоточена в ядре клетки, а белки синтезируются в цитоплазме на рибосомах. Для биосинтеза белка необходимо доставить генетическую информацию из ядра клетки к рибосомам. Роль посредника, обеспечивающего передачу генетической информации от ядра клетки к рибосомам, выполняют матричные, или информационные, РНК (мРНК, или иРНК).

Матричные РНК представляют собой полинуклеотидные цепочки с молекулярными массами от 150 тысяч до 5 миллионов дальтон. Они синтезируются в ядре клетки. В ходе биосинтеза мРНК генетическая информация «переписывается» с небольшого участка ДНК, включающего один или несколько генов, на молекулу мРНК. Синтез матричной РНК на значащей нити ДНК получил название транскрипции (лат. «transcriptio » — переписывание).

Процесс транскрипции генетической информации сходен с процессом репликации ДНК. Биосинтез мРНК начицается с расплетания двойной спирали ДНК на небольшом участке.

Свободные рибонуклеозидтрифосфаты с помощью Водородных связей присоединяются к нуклеотидам расплетенного участка ДНК в соответствии с принципом комплементарности азотистых оснований.

Образование мРНК происходит путем переноса от рибонуклеозидтрифосфатов остатков рибонуклеотидов к третьему атому углерода рибозы концевого нуклеотида синтезируемой полинуклеотидной цепи. При этом происходит разрыв Макроэргических связей в молекулах рибонуклеозидтрифосфатов с выделением пирофосфата, что обеспечивает процесс транскрипции необходимой энергией. Биосинтез мРНК катализирует фермент РНК-полимераза.

Большую роль в процессе транскрипции играют специальные белки, которые тонко регулируют его ход.

Синтезированная в процессе транскрипции мРНК Поступает из ядра клетки в рибосому — цитоплазматическую серганеллу, по химической природе представляющую собой нукдеопротеид — сложный белок, небелковым компонентом которого является рибонуклеиновая кислота.

РНК, участвующие в построении тела рибосомы («рибонуклеиновая кислота» + гр. «сома» — тело), называют рибосомальными (рРНК). Рибосомы построены из двух субчастиц — большой и малой. В построении каждой из них участвуют большое количество разных белков и различные рРНК. Молекулярная масса рибосомальных РНК колеблется от 55000 до 1600000 дальтон и более. Синтез рРНК, также как и синтез мРНК, происходит в ядре клетки и контролируется ДНК.

Матричная РНК закрепляется в рибосоме. Теперь рибосоме необходимо воспроизвести полученную информацию, записанную в нуклеотидной последовательности мРНК четырехбуквенным «языком» азотистых оснований, на двадцатибуквенном «языке» в виде последовательности аминокислот в полипептидной цепочке синтезируемого белка. Процесс перевода генетической информации с «языка» азотистых оснований на «язык» аминокислот называют трансляцией (лат. «translation» — передача).

Доставку аминокислот к рибосомам обеспечивают транспортные РНК (тРНК). Молекулярные массы тРНК относительно невелики и варьируют в пределах от 17000 до 35000 дальтон. Синтезом тРНК в клетке управляет ДНК.

Процесс биосинтеза белка требует энергетических затрат. Для того чтобы аминокислоты соединились друг с другом пептидной связью, их необходимо активировать. Аминокислоты активируются с участием АТФ и тРНК. Эти реакции катализирует фермент аминоацил-тРНК-синтетаза.

Реакции активирования каждой из протеиногенных аминокислот катализируются своей аминоацил-тРНК-синтетазой.

Эти ферменты позволяют аминокислотам и тРНК безошибочно узнавать друг друга. В результате каждая аминокислота присоединяется к конкретной тРНК. Транспортные РНК называют по присоединяющейся аминокислоте, например: валиновая тРНК, аланиновая тРНК, сериновая тРНК и т. д.

Полинуклеотидные цепочки тРНК имеют пространственную структуру, напоминающую по форме клеверный лист. К одному из концов тРНК присоединяется аминокислота. На другой стороне молекулы тРНК в одной из петель «клеверного листа» имеется триплет

нуклеотидов, называемый антикодоном. Этот антикодон комплементарен одному из триплетов мРНК — кодону. Генетический код кодона соответствует аминокислоте, соединенной с тРНК, обладающей комплементарным антикодоном.

Кодоны в зрелой мРНК следуют один за другим непрерывно: они не отделены друг от друга некодирующими участками и не перекрываются.

Аминоацил-тРНК последовательно поступают в рибосомы.

Здесь всякий раз между комплементарными антикодоном тРНК и кодоном мРНК возникают водородные связи. При этом аминогруппа последующей аминокислоты взаимодействует с

Карбоксильной группой предыдущей аминокислоты с образованием пептидной связи.

Синтез любого белка в клетке всегда начинается с N-конца. После образования между аминокислотами пептидной связи рибосома перемещается вдоль цепи мРНК на один кодон. Когда рибосома достигает участка мРНК, содержащего один из трех «бессмысленных» триплетов — УАА, УАГ или УГА, дальнейший синтез полипептидной цепи обрывается. Для этих триплетов в клетке не существует тРНК с комплементарными антикодонами. «Бессмысленные» триплеты располагаются в конце каждого гена и показывают, что синтез данного белка на этом необходимо завершить. Поэтому эти триплеты называют терминирующими (лат. «terminalis» — конечный). По окончании процесса трансляции генетического кода полипептидная цепочка покидает рибосому и формирует свою пространственную структуру, после чего белок приобретает способность к реализации присущей ему биологической функции. Процесс реализации генетической информации в результате транскрипции и трансляции называют экспрессией (лат. «expressio» — выражение) гена.

Биосинтез белка в клетке протекает не на отдельной рибосоме.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Генетический код

Генети́ческий код - это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. 
В ДНК используется четыре нуклеотида — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв. 
Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокислот также универсален для почти всех живых организмов. 
Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на матрице иРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке. 
Свойства генетического кода Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон). 
Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно. 
Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов. (Не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки). 
Однозначность — определённый кодон соответствует только одной аминокислоте. (Свойство не является универсальным. Кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин) 
Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов. 
Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека

 

Транскрипция и трансляция

ДНК - носитель генетической информации. Впервые понятие ген было сформулировано в 1941 году Д. Бидлом и Э. Татумом. В настоящее время геном называют участок молекулы ДНК, кодирующий первичную структуру полипептида. ДНК непосредственного участия в синтезе белков не принимает. В клетках человека молекулы ДНК находятся в ядре и отделены ядерной мембраной от цитоплазмы, где проходит синтез белка. Информацию несет посредник – и-РНК, который по принципу комплементарности считывает (копирует) с ДНК информацию при участии фермента РИК-полимеразы. Переписывание последовательности нуклеотидов или генетической информации происходит с одной нити ДНК и называется транскрипцией (лат. transcriptio - переписывание). Если в переписываемой нити ДНК стоит нуклеотид гуанин (Г), то фермент РНК - полимераза включает в и-РНК комплементарный цитозин (Ц); если стоит аденин (А), фермент включает урацил (У). По длине каждая из молекул и-РНК в сотни раз короче ДНК. Информационная РНК является копией не всей молекулы ДНК, а только ее части - одного гена, несущего информацию о структуре белка. Готовая и-РНК отходит от ДНК и направляется к месту синтеза белка. Существует механизм «узнавания» выбора цепи ДНК для транскрипции - это система «оперона».

Она состоит из генов:

1) ген-активатор, к которому  присоединяется фермент РНК-полимераза;

2) ген-промотор, указывает  место транскрипции, с его помощью  выбирается участок ДНК, который  под действием фермента раскручивается;

З) ген-начала синтеза - ТАЦ;

4) ген-оператор - управляющий  работой генов, наращиванием цепи  и-РНК, продвижением фермента PHK-полимеразы по цепочке ДНК;

5) ген-терминатор-участок  ДНК, прекращающий транскрипцию - АТЦ, АТТ, АЦТ.

Благодаря процессу транскрипции в клетке осуществляется передача информации от ДНК к белку по цепочке: ДНК - и-РНК- белок

Перевод информации с и-РНК на последовательность аминокислот называется трансляцией (от лат. translatio - передача), которая происходит на рибосомах.

 

 

 

 

Практическое применение молекулярной генетики

 

Практическое применение молекулярной генетики открывает большие перспективы переделки наследственной природы организмов. Ворганизме кишечной бактерии был выделен ген, ответственный за усвоение лактозы, а вскоре генетики внедрили в организм кишечной палочки ген инсулина, не характерный ей. Тогда кишечные палочки стали вырабатывать инсулин, что использовано для npомышленного производства инсулина для больных диабетом. Постепенно генетики добрались до расшифровки генома человека, что было окончательно сделано в 2000 году. В настоящее время открыты все гены в молекуле ДНК, их функции. Это поможет в лечении наследственной патологии путем генной инженерии.

Стало возможным внедрить ген соединительной ткани, способствующий усвоено сахара галактозы в культуру клеток соединительной ткани для лечения больных галактоземией. Выделен ген, руководящий ростом раковых клеток и фермент, который усиливает рост этих клеток.

Обнаружен ген старения клеток и организма. Все это открывает большие перспективы в лечении и предупреждении многих заболеваний.

Генную инженерию давно используют при получении бактерий-продуцентов необыкновенных для них веществ или обыкновенных, но в большом количестве. Например, продуценты антибиотиков, ферментов, витаминов, белков.

Знания генетики стали использовать для клонирования организмов, создавая культуру клеток, тканей и организма, начиная с одного ядра клетки, в котором записана вся информация об организации. В октябре 2001 года генетики сообщили, что открыли механизм регуляции митоза и мейоза. Теперь можно будет руководить этим процессом, предупредить образование раковых клеток.

 

 

 

 

 

 

 

Перенос генетической информации в клетке. Структура и сохранение геномной ДНК

Информационные взаимоотношения между ДНК, РНК и белками теперь точно установлены. Репликация, с помощью которой создаются идентичные копии родительской молекулы ДНК, обеспечивает генетическую непрерывность в ряду поколений. Транскрипция ДНК с образованием РНК опосредует трансляцию этой информации на уровень белков. Итак, ДНК выполняет две основополагающие функции. Первая-это осуществление своей собственной репликации. Вторая - это формирование фенотипа через образование молекул РНК, участвующих в трансляции информации, содержащейся в ДНК, на язык белков. И, насколько это известно, только у эукариот информация может передаваться в обратном направлении, от РНК к ДНК, посредством процесса, именуемого обратной транскрипцией.

В основе переноса информации от ДНК к РНК или от РНК к ДНК лежит универсальная способность нуклеиновых кислот служить матрицей. Нуклеиновые кислоты направляют сборку идентичных или родственных молекул и непосредственно участвуют в процессе синтеза белка. Насколько известно, информация не передается от белков к нуклеиновым кислотам. Однако белки помимо самосборки осуществляют важнейшую функцию катализа и информационного переноса между нуклеиновыми кислотами.

Далее мы рассмотрим вкратце ключевые характеристики генетического аппарата и его функционирования: структурные особенности важнейших компонентов молекул - ДНК, РНК и белков - и то, как они работают, обеспечивая сохранение целостности генома и трансляцию генотипа организма в его фенотип. Эти вопросы детально рассматриваются в гл.1, 2 и 3, составляющих первую часть книги. Все клеточные ДНК состоят из двух полинуклеотидных цепей, закрученных вокруг общей оси с образованием двойной спирали. Наружную поверхность спирали составляет остов каждой цепи, состоящий из повторяющихся остатков дезоксирибозы. Цепи удерживаются вместе благодаря водородным связям между пуриновыми основаниями одной цепи и пиримидиновыми - другой: аденин всегда спарен с тимином, а гуанин - с цитозином. В результате образования таких практически инвариантных пар последовательность оснований одной цепи однозначно определяет их последовательность в другой - иными словами, цепи двойной спирали ДНК комплиментарны.

Информация о работе Биохимические и молекулярные основы наследственности