Биохимические процессы(ферментация)

Автор работы: Пользователь скрыл имя, 06 Июня 2013 в 11:17, реферат

Краткое описание

Под ферментацией понимают всю совокупность последовательных операций от внесения в заранее приготовленную и нагретую до требуемой температуры среду посевного материала и до завершения процесса роста клеток или биосинтеза целевого продукта [49]. По окончании ферментации образуется сложная смесь, состоящая из клеток продуцента, раствора непотребленных питательных компонентов и накопившихся в среде продуктов биосинтеза. Такую смесь называют культуральной жидкостью.

Содержание

Основная ферментация
Технологические особенности процессов ферментации
Конструкции ферментеров (биореакторов)
Ферментеры (биореакторы) с подводом энергии к газовой фазе.
Ферментеры (биореакторы) с подводом энергии к жидкой фазе.
Ферментеры (биореакторы) с комбинированным подводом энергии.
Основные факторы среды, определяющие рост и биосинтетическую активность продуцентов

Вложенные файлы: 1 файл

биохимические процессы(ферментация).docx

— 36.80 Кб (Скачать файл)

Министерство образования  и науки Российской Федерации

Федеральное государственное  бюджетное образовательное учреждение

высшего профессионального  образования

«Южно-Уральский государственный  университет»

(национальный исследовательский  университет)

Кафедра «Технология продуктов  и организация общественного  питания»

 

 

 

Реферат

«Биохимические процессы(ферментация)»

 

 

 

 

 

                                                 Выполнил:

                                                               Студент факультета

                                                                                   «Пищевые технологии» гр.№351

                                                         Москвичев Е.А.                                                                                                       

 

                                                Проверил:

                                                 Лукин А.А                                         

 

 

 

 

 

 

 

 

 

Челябинск,2013г.

СОДЕРЖАНИЕ:

  1. Основная ферментация
  2. Технологические особенности процессов ферментации 
  3. Конструкции ферментеров (биореакторов) 
  4. Ферментеры (биореакторы) с подводом энергии к газовой фазе.
  5. Ферментеры (биореакторы) с подводом энергии к жидкой фазе.
  6. Ферментеры (биореакторы) с комбинированным подводом энергии.
  7. Основные факторы среды, определяющие рост и биосинтетическую активность продуцентов

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Основная ферментация 
   Под ферментацией понимают всю совокупность последовательных операций от внесения в заранее приготовленную и нагретую до требуемой температуры среду посевного материала и до завершения процесса роста клеток или биосинтеза целевого продукта [49]. По окончании ферментации образуется сложная смесь, состоящая из клеток продуцента, раствора непотребленных питательных компонентов и накопившихся в среде продуктов биосинтеза. Такую смесь называют культуральной жидкостью.

Технологические особенности процессов ферментации  
   По технологическому оформлению различают следующие микробиологические процессы: аэробное и анаэробное культивирование; твердофазное, поверхностное и глубинное культивирование; периодическое и непрерывное культивирование. 
   Аэробное культивирование — аэрация среды — непременное условие в тех микробиологических процессах, в которых используются аэробные микроорганизмы-продуценты.  
   Потребность аэробных микроорганизмов в молекулярном кислороде зависит от окисляемого источника углерода и от физиологических свойств и активности роста микроорганизмов. Для биосинтеза 1 кг дрожжевой биомассы необходимо, например, 0,74–2,6 кг молекулярного кислорода. При интенсивном потреблении субстрата независимо от источника углерода продуцент ассимилирует 0,83–4,0 мг кислорода/1 л среды/мин. 
   Растворимость кислорода в среде сравнительно низка и зависит от температуры, давления и от концентрации растворенных, эмульгированных и диспергированных компонентов (табл. 1). При давлении 0,1 МПа и температуре 30°С в 1 л дистиллированной воды максимальное количество растворенного кислорода составляет 7,5 мг. В реальной питательной среде максимальная растворимость кислорода колеблется в интервале 2–5 мг/л. Запасы кислорода в среде обеспечивают жизнедеятельность аэробного продуцента в течение 0,5–2 мин. 
   При глубинном культивировании запасы кислорода в питательной среде возобновляются при подаче аэрирующего воздуха. Скорость абсорбции кислорода увеличивается с ростом интенсивности перемешивания среды (табл. 2). 
   Во время роста биомассы микроорганизмы обычно потребляют больше кислорода, чем во время сверхсинтеза целевого метаболита. Принято говорить о критической концентрации кислорода, при которой наблюдается лимитация дыхания клеток. Для большинства аэробных микроорганизмов, растущих в сахаросодержащих субстратах, критическая концентрация кислорода 0,05–0,10 мг/л, что соответствует 3–8 % от полного насыщения среды кислородом. Лимитация роста и физиологической деятельности клеток наблюдается при более высоких концентрациях кислорода: на средах с глюкозой рост дрожжей лимитируется при рО2 на уровне 20–25 % от полного насыщения.  
   Оптимальной для роста биомассы считается концентрация кислорода 50–60 % от полного насыщения, для биосинтеза целевых метаболитов — 10–20 %.

Таблица 1. 
   Зависимость абсорбции кислорода в воде (мг/л) от концентрации диспергированных компонентов (20 °С)  

Сахароза

Подсолнечное масло

Биомасса

концентрация, %

абсорбция О2

концентрация, %

абсорбция О2

концентрация, %

абсорбция О2

0

8,2

0

8,9

0

8,0

2,5

7,8

0,05

11,6

3,0

4,1

5,0

7,2

0,10

18,9

6,0

2,4

7,5

6,6

0,15

19,0

9,6

1,5

10,0

5,9

0,20

22,3

16,0

1,2

15,0

4,8

0,25

24,0

32,0

0,8


Таблица 2. 
   Зависимость скорости абсорбции кислорода в воде от аэрации и перемешивания среды* (мг/(л • мин))  

Количество подаваемого  воздуха, м3/(м3*мин)

Частота вращения мешалки, мин-1

0

500

800

1000

2000

0,35

1,3

4,0

7,5

14,5

15,1

0,65

3,5

7,3

12,1

19,1

22,1

1,00

6,0

10,0

15,0

23,0

24,0

1,30

7,5

13,9

18,0

26,0

28,0

1,60

11,0

15,5

20,0

27,0

29,0


Анаэробные процессы биологического окисления у гетеротрофных микроорганизмов в зависимости от того, что является конечным акцептором водородных атомов или электронов, делят на три группы: дыхание (акцептор — кислород); брожение (акцептор — органическое вещество) и анаэробное дыхание (акцептор — неорганическое вещество : нитраты, сульфаты и др.). 
   У облигатных анаэробов брожение является единственно возможным способом получения энергии; у факультативных анаэробов оно составляет обязательную первую стадию катаболизма глюкозы, за которой может следовать аэробное окисление образовавшихся продуктов, если в среде присутствует кислород. 
   Обособленной промежуточной группой являются аэротолерантные микроорганизмы, получающие необходимую для жизнедеятельности энергию в анаэробном процессе, т. е. на уровне субстратного фосфорилирования, и одновременно имеющие дыхательную цепь для поглощения кислорода среды и создания благоприятных анаэробных условий. Данный эффект носит название «эффекта дыхательной защиты». 
   Примерами облигатно анаэробных процессов являются маслянокислое и метановое брожения. Универсальным для всех микроорганизмов, за небольшими исключениями, является катаболизм глюкозы — гликолиз до образования пирувата: 
           Глюкоза + 2АТР + 2 NAD = 2 Пируват + 4АТР + 2NADH + 2Н+ 
   Возбудители спиртового брожения (дрожжи) после декарбоксилирования пирувата и образования ацетальдегида восстанавливают ацетальдегид до этанола. Молочнокислые бактерии гомогенного молочнокислого брожения восстанавливают пируват до молочной кислоты. Гетероферментативные молочнокислые бактерии сбраживают глюкозу по несколько отличающемуся пентозофосфатному пути с образованием молочной кислоты, а также уксусной кислоты, этанола и диоксида углерода.  
   Анаэробные условия на производстве создают герметизацией аппаратуры, продуванием среды инертными газами, в том числе газообразными продуктами, образовавшимися во время ферментации. Отсутствие необходимости аэрации среды несколько упрощает при анаэробной ферментации конструкцию ферментера (биореактора) и облегчает управление процессом. 
   Твердофазную ферментацию обычно реализуют в твердой, сыпучей или пастообразной среде, влажность которой составляет 30–80 %. 
   Различают три типа твердофазных процессов: 
   • поверхностные процессы: слой субстрата, например соломы, не превышает 3–7 см («тонкий слой»); роль биореактора выполняют большие, площадью до нескольких квадратных метров, подносы из алюминия или культивационные камеры);  
   • глубинные твердофазные процессы в неперемешиваемом слое («высокий слой»): биореакторы представляют собой глубокие открытые сосуды. Для аэробных процессов разработаны приспособления, обеспечивающие диффузионный и конъюктивный газообмен; 
   • твердофазные процессы в перемешиваемой и аэрируемой массе субстрата, которая может быть гомогенной или состоять из частиц твердого субстрата, взвешенных в жидкости.

Если субстрат сыпучий, то отдельные твердые частицы его  хорошо контактируют с воздухом, рост микроорганизмов в этом случае происходит главным образом на поверхности  твердых частиц, а также в порах, заполненных либо водой, либо воздухом. Обеспечение микроорганизмов кислородом затрудняется с увеличением слоя субстрата. Перемешивание слоя не допускается, если культивируются мицелиальные микроорганизмы, например микромицеты, и из-за отсутствия перемешивания рост микроорганизмов происходит по принципу колонизации, поэтому часто возникает локальная нехватка питательных веществ. Другая проблема при твердофазной ферментации — отвод теплоты и поддержание постоянной температуры во всей ферментационной среде.  
   Однако твердофазные процессы имеют и преимущества по сравнению с процессами, протекающими в жидкой среде:  
   • они требуют меньших затрат на Лабораторное оборудование и эксплуатацию;  
   • характер субстрата облегчает отделение и очистку продукта;  
   • низкое содержание воды в субстрате препятствует заражению культуры продуцента посторонней микрофлорой;  
   • твердофазные процессы не связаны со сбросом в окружающую среду большого количества сточных вод.

Управляемый процесс твердофазной ферментации в промышленных условиях осуществлен при производстве ферментов  с использованием микромицетов. Сыпучий субстрат с культурой инкубируют в тонком слое (3–7 см) в кюветах, размещенных в камерах, где поддерживают оптимальные температуру и влажность воздуха, обеспечивают принудительную циркуляцию газовой фазы вдоль поверхности ферментируемого субстрата. Воздух в данном случае является и аэрирующим, и теплоотводящим агентом. 
   Более толстый слой гранулированного крахмалсодержащего субстрата используют для протеинизации (до 20 %) корма при помощи Asp. niger. В данном случае применяют неинтенсивное перемешивание среды. 
   Поверхностная ферментация на жидких субстратах реализуется в кюветах со средой, помещенных в вентилированные воздухом камеры. Культура микроорганизмов при этом образует биомассу в виде пленки или твердого слоя на поверхности жидкой среды. Культура потребляет кислород непосредственно из газовой фазы — воздуха. Массообмен в таких условиях малоинтенсивный. 
   Глубинное культивирование микроорганизмов происходит во всем объеме жидкой питательной среды, содержащей растворенный субстрат. Ферментер должен обеспечивать рост и развитие популяций микроорганизмов в объеме жидкой фазы, подвод питательных веществ к клеткам микроорганизмов, отвод от микробных клеток продуктов их обмена веществ (метаболизма), отвод из среды выделяемого клетками тепла. 
   Глубинное культивирование можно осуществлять периодическим и непрерывным способами. 
   Периодическое культивирование. При периодическом способе культивировании в ферментер загружают сразу весь объем питательной среды и вносят посевной материал. Выращивание микроорганизмов проводят в оптимальных условиях в течение определенного времени, после чего процесс останавливают, сливают содержимое ферментера и выделяют целевой продукт. 
   Этап роста культуры включает: лаг-фазу, экспоненциальную фазу, фазу замедления роста, стационарную фазу, фазу отмирания. 
   Широко применяют периодическое культивирование с подпиткой. Существует также объемно-доливочное культивирование, когда часть объема из биореактора время от времени изымается при добавлении эквивалентного объема среды (полунепрерывное культивирование). 
   Непрерывные процессы. При непрерывном способе питательная среда непрерывно подается в ферментер (биореактор), в котором создают оптимальные условия для роста микроорганизмов, а из ферментера (биореактора) также непрерывно вытекает культуральная жидкость вместе с микроорганизмами. 
   В непрерывных процессах биообъект поддерживается в экспоненциальной фазе роста. При этом существует равновесие между приростом биомассы за счет деления клеток и их убылью в результате разбавления свежей средой. 
   Из непрерывных процессов лучше всего изучен метод глубинной ферментации. Процесс может быть гомогенно или гетерогенно-непрерывным.  
   При гомогенно-непрерывном процессе в аппарате, где идет интенсивное перемешивание, все параметры постоянны во времени.  
   При гетерогенно-непрерывном процессе несколько ферментеров соединены вместе. Питательная среда поступает в первый аппарат, готовая культуральная жидкость вытекает из последнего. 
   При непрерывном культивировании микроорганизмов необходимо предотвратить вымывание культуры из системы, т. е. обеспечить постоянную концентрацию клеток. В стерильных условиях непрерывный, проточный метод обеспечивает сохранение культуры в физиологически активном состоянии длительное время. 
   В зависимости от метода, благодаря которому культура поддерживается в состоянии динамического равновесия (когда μ = D), различают турбидостатный и хемостатный принципы.  
   При турбидостате скорость притока среды такова, что концентрация биомассы в системе постоянна; при хемостате в системе ограничивают рост культуры одним элементом питания (углерода, кислорода, соответствующего витамина и др.) при нелимитируемых количествах остальных. Известны также методы управления ростом проточной культуры по рН (рН-стат), по кислороду (оксистат). 
   В зависимости от цели производства — получение клеток или продуктов их жизнедеятельности — способы ведения основной ферментации различаются. Если процесс направлен на получение биомассы, то назначение ферментации — получить максимально возможный титр клеток, а в случае получения метаболитов их накопление осуществляют одновременно, причем максимумы образования продуцента и целевого продукта всегда сдвинуты по времени. Поэтому продолжительность ферментации в первом случае всегда меньше, чем во втором. 
   Если целью является получение биомассы промышленного штамма в периодическом процессе, то время культивирования не превышает 24 ч. При производстве первичных метаболитов время биосинтеза составляет 48–72 ч, а вторичных — 72–144 ч. 
   При культивировании различных микроорганизмов интервал рабочих температур варьирует в пределах 25–60°С, значения рН — 2÷9, расход воздуха в аэробных процессах — 0,15–2,5 м3/1 м3 среды/мин.

Конструкции ферментеров (биореакторов)  
   В микробиологических производствах в зависимости от особенностей процесса применяют разнообразные ферментеры, или биореакторы.  
Аппараты для аэробной поверхностной ферментации широко применяются для производства органических кислот. Поверхностная жидкофазная ферментация протекает в так называемых бродильных вентилируемых камерах, в которых на стеллажах размещены плоские металлические кюветы. В кюветы наливают жидкую питательную среду (высота слоя составляет 80–150 мм), затем с потоком подаваемого воздуха среду инокулируют спорами продуцента. В камере стабилизируется влажность, температура и скорость подачи воздуха. После завершения процесса культуральная жидкость сливается из кювет через вмонтированные в днище штуцеры и поступает на обработку. 
   При твердофазной ферментации процесс также протекает в вентилируемых камерах, но вместо кювет на стеллажах размещают лотки, в которые насыпают сыпучую твердую среду слоем 10–15 мм. Для лучшей аэрации среды подаваемый в камеру воздух проходит через перфорированное днище лотков. 
   Аппараты для аэробной глубинной ферментации наиболее сложны как конструкционно, так и с точки зрения их эксплуатации. Главная задача — обеспечение высокой интенсивности массо и энергообмена клеток со средой. 
   По структуре потоков ферментеры (биореакторы) могут быть аппаратами полного перемешивания или полного вытеснения. 
   Конструктивные различия ферментеров (биореакторов) определяются в основном способами подвода энергии и аэрации среды:  
   • ферментеры (биореакторы) с подводом энергии к газовой фазе;  
   • ферментеры (биореакторы) с подводом энергии к жидкой фазе;  
   • ферментеры (биореакторы) с комбинированным подводом энергии.

Ферментеры (биореакторы) с подводом энергии к газовой фазе. В аппаратах этого типа аэрация и перемешивание культуральной жидкости осуществляются сжатым воздухом, который подается в ферментер (биореактор) под определенным давлением. К таким ферментерам (биореакторам) относят: 
   • барботажные ферментеры (биореакторы), подача воздуха в которых осуществляется через барботажные устройства, расположенные в нижней части аппарата;  
   • аппараты с диффузором (эрлифтные аэраторы), имеющие внутренний цилиндр-диффузор, который обеспечивает перемешивание поступающих по распределительным трубам в нижнюю часть аппарата субстрата и воздуха;  
   • трубчатые ферментеры (биореакторы) (газлифтные), состоящие из реактора кожухотрубчатого типа, через который жидкость потоком воздуха перемещается в верхнюю часть аппарата и, попадая в сепаратор, возвращается в реактор, где снова увлекается воздухом, подвергаясь таким образом циркуляции;  
   • ферментеры (биореакторы) с форсуночным воздухораспределением, оборудованные форсунками для подачи воздуха, расположенными в нижней части аппарата, и находящимся над ними диффузором, который обеспечивает внутреннюю циркуляцию жидкости;  
   • ферментеры (биореакторы) колонного типа, представляющие собой цилиндрическую колонну, разделенную горизонтальными перегородками (тарелками) на секции; воздух барботирует через слой жидкости каждой тарелки, а перемещение жидкости через кольцевую щель обеспечивает противоточное движение жидкой и газовой фаз.

Ферментеры (биореакторы) с подводом энергии к жидкой фазе. К таким аппаратам относят: 
   • аппарат с самовсасывающей турбиной, имеющий цилиндрический диффузор и мешалку с полыми лопастями и валом, при вращении которой за счет создаваемого разрежения происходит самовсасывание воздуха, благодаря чему происходит подъем жидкости в кольцевом зазоре между диффузором и стенками аппарата с последующим ее возвращением в диффузор;  
   • ферментер (биореактор) с турбоэжекторными перемешивающими устройствами — аппарат, разделенный вертикальными перегородками на секции, в каждой из которой имеется самовсасывающая мешалка турбинного типа (эжектор) и диффузор; для перемещения жидкости из секции в секцию в перегородках сделаны окна.

Ферментеры (биореакторы) с комбинированным подводом энергии. В этих аппаратах осуществлен подвод энергии к газовой фазе для аэрации и к жидкой фазе для перемешивания. Ферментер (биореактор) представляет собой цилиндрический сосуд, снабженный механической мешалкой и барботером, который устанавливается, как правило, под нижним ярусом мешалки. 
   Используется также классификация биореакторов по способу перемешивания, в соответствии с которой используются аппараты с механическим, пневматическим и циркуляционным перемешиванием. 
   Аппараты с механическим перемешиванием имеют механическую мешалку, состоящую из центрального вала и лопастей различной формы. Аэрация может осуществляться путем барботажа. Разбрызгиванию воздуха в виде мелких пузырьков способствует механический вибратор, установленный рядом с барботером. 
   Аппараты с пневматическим перемешиванием. Перемешивание и аэрация усиливаются с помощью вращающихся дисков с отверстиями, установленных вблизи барботера, или с помощью придонных пропеллеров. Классический эрлифтный аппарат дополнен диффузором, нижний обрез которого находится над барботером. Возможны варианты подачи воздуха как во внутренний, так и во внешний по отношению к диффузору объем среды.  
   Аппараты с циркуляционным перемешиванием содержат устройства (насосы, эжекторы), создающие направленный ток жидкости по замкнутому контуру. Насос для циркуляции культуральной жидкости может соседствовать с барботером (сочетание пневматического и циркуляционного перемешивания). Существуют разные варианты такого типа аппаратов: аппараты типа «падающей струи», типа «погруженной струи», перемешивание с помощью эжектора. Аппараты циркуляционного типа часто заполняют твердыми частицами (насадкой). 
   Ферментеры (биореакторы) обычно представляют собой герметические цилиндрические емкости, высота которых в 2–2,5 раза превышает диаметр. Чаще всего их изготовляют из нержавеющей стали. Для поддержания температуры в аппарате имеется двойной кожух или теплообменник типа змеевика.  
   Главное требование к аппаратам — сохранение стерильности, поэтому они должны быть герметичными, все линии трубопроводов должны быть доступны для обработки горячим паром. Рабочий объем ферментера (биореактора) обычно не превышает 7/10 общего объема.  
   Тип ферментера (биореактора) для каждого биотехнологического процесса выбирают с учетом специфики продуцента, свойств среды и экономических соображений. Важное значение для аэробного процесса имеет система аэрации. При этом оценивают, с одной стороны, скорости поступления кислорода с жидкостью и его массопередачи от газовой фазы, с другой — скорости потребления кислорода микроорганизмами и его удаления с отработавшей жидкостью. Скорость перехода кислорода из газовой фазы в жидкую выражают через объемную скорость абсорбции. Изменение концентрации кислорода в жидкой фазе характеризуется уравнением 
        dC/dt = KLa (Cp – С),

где KLa — объемный коэффициент массопередачи на границе газ—жидкость; Сp — равновесная концентрация кислорода в среде; С — фактическая мгновенная концентрация кислорода в среде. 
Основные факторы среды, определяющие рост и биосинтетическую активность продуцентов

Фактор

Роль при культивировании

Методы управления фактором

Состав и концентрация питательных веществ

Обеспечивает метаболизм

Составление оптимальной  композиции; подпитка во время ферментации; непрерывность процесса; многостадийность с учетом потребностей продуцента по фазам развития и др.

Концентрация продуктов  и ингибиторов

Замедляет биохимические  реакции

Осаждение продукта по мере накопления; ферментация с диализом; ферментация под разрежением  с испарением летучего продукта и  др.

рН

Оптимизирует скорости биохимических  реакций

Регулирование путем добавления кислоты или щелочи

Температура

То же

Охлаждение или подогрев культуральной жидкости при помощи теплообменников или температуры подаваемых в биореактор субстратов

Осмотическое давление или  активность воды

Определяет границы жизни (составляет 0,6-0,998)

Составление сред с оптимальной  концентрацией питательных веществ  или влажностью твердой среды; поддержание  на постоянном уровне во время ферментации  путем разбавления водой или  добавлением отдельных компонентов

Содержание растворенного  кислорода

Для аэробов обеспечивает аэробный метаболизм; является акцептором Н+; ингибирует развитие анаэробов

Для аэробных процессов регулируют интенсивностью аэрации или добавлением  к газовой смеси кислорода. Анаэробные процессы реализуют в бескислородной среде

Содержание диоксида углерода

Источник углерода для  автотрофов; некоторые гетеротрофы  нуждаются, а некоторые замедляют  метаболизм в присутствии СО2

Продувание в фотосинтезирующих  процессах ферментации газовой  средой, обогащенной СО2; выделению СОиз жидкой фазы способствует перемешивание

Перемешивание среды

Равномерное распределение  питательных веществ и биомассы по всему пространству среды

Организуют макро- и микроперемешивание при помощи механических мешалок, барботажных, циркуляционных и других систем

Вязкость среды

Определяет диффузию питательных  веществ и перемешивание клеток продуцента

Регулирование компонентами питания, характером и концентрацией  биомассы, наличием некоторых полимерных продуктов. Вязкость влияет на перемешивание  и аэрацию; требуются специальные  технические средства


 


 

 

 

 

 

 

 


Информация о работе Биохимические процессы(ферментация)