Генная инженерия: возможности и перспективы

Автор работы: Пользователь скрыл имя, 13 Мая 2015 в 14:41, реферат

Краткое описание

Генная инженерия - это область биотехнологий, включающая в себя действия по перестройке генотипов. Суть генной инженерии сводится к пониманию того, что любой организм, будь то животного или растительного происхождения, имеет множество характерных признаков. К примеру, у растений это цвет коры, листьев, наличие или отсутствие тех или иных витаминов в плодах, структура ствола и так далее. Каждый признак определяется наличием гена.

Содержание

Введение 3
Возникновение генной инженерии 4
Современные возможности генной инженерии 9
Перспективы генной инженерии 15
Интересные факты 25
Заключение 28
Список используемой литературы 29

Вложенные файлы: 1 файл

реферат ген.инж.docx

— 331.46 Кб (Скачать файл)

Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации — генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген — участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген — один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.

Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения генов прежде всего связано с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Этот процесс состоит из нескольких этапов.

1.  Рестрикция — разрезание ДНК, например, человека на фрагменты.

2.  Лигирование — фрагмент с нужным геном включают в плазмиды и сшивают их.

3.  Трансформация —введение рекомбинантных плазмид в бактериальные клетки. Трансформированные бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков — клон.

4.  Скрининг — отбор среди клонов трансформированных бактерий тех, которые плазмиды, несущие нужный ген человека.

Весь этот процесс называется клонированием. С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина при посредстве такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней.

Эксперименты по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее — либо в пробирке, либо в чреве приемной матери. Клонированная овечка Доли была создана нетрадиционным путем. Ядро из клетки вымени 6-летней взрослой овцы одной породы пересадили в безъядерное яйцо овцы другой породы. Развивающийся зародыш поместили в овцу третей породы. Так как родившаяся овечка получила все гены от первой овцы — донора, то является ее точной генетической копией. Этот эксперимент открывает массу новых возможностей для клонирования элитных пород, взамен многолетней селекции.

Ученые Техасского университета смогли продлить жизнь нескольких типов человеческих клеток. Обычно клетка умирает, пережив около 7-10 процессов деления, а они добились сто делений клетки. Старение, по мнению ученых, происходит из-за того, что клетки при каждом делении теряют теломеры, молекулярные структуры, которые располагаются на концах всех хромосом. Ученые имплантировали в клетки открытый ими ген, отвечающий за выработку теломеразы и тем самым сделали их бессмертными. Возможно это будущий путь к бессмертию.

Еще с 80-х годов появились программы по изучению генома человека. В процессе выполнения этих программ уже прочитано около 5 тысяч генов (полный геном человека содержит 50-100 тысяч). Обнаружен ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии. Потому, что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним. Многие ученые считают, что в XXI веке будет функционировать геномная медицина и генная инженерия.

 

 
Протесты против ГМО продуктов. Фото: Luther Blissett

 

Возможности генной инженерии

 

Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека.

В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объёму купли-продажи акций на рынках ценных бумаг). Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных, и тратят на это десятки миллионов долларов в год, они же мобилизировали выпуск химических веществ для быта. Добавок к продукции строительной индустрии и так далее. Уже не десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии, и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок. Очевидно поэтому любой прогресс биотехнологий растений будет зависеть от разработки генетических систем и инструментов, которые позволят более эффективно управлять трансгенами. Для чистого вырезания трансгенного ДНК в растительный геном, всё больше применяют заимствованные из микробной генетики системы гомологичной рекомбинации, такие как системы Cre-lox и Flp-frt. Будущее, очевидно, будет за управляемым переносом генов от сорта к сорту, основанного на применении предварительно подготовленного растительного материала, который уже содержит в нужных хромосомах участки гомологии, необходимого для гомологичного встраивания трансгена. Помимо интегративных систем экспрессии, будут опробованы автономно реплицирующиеся векторы осбый интерес представляют искусственные хромосомы растений, которые теоретически не накладывают никаких ограничений на объём вносимой теоретической информации.

Кроме этого учёные занимаются поиском генов, кодирующих новые полезные признаки. Ситуация в этой области меняется радикальным образом, прежде всего, существованию публичных баз данных, которые содержат информацию о большинстве генов, бактерий, дрожжей, человека и растений, а также в следствии разработки методов, позволяющих одновременно анализировать экспрессию большого количества генов с очень высокой пропускной способностью. Применяемые на практике методы можно разделить на две категории:

Методы, позволяющие вести экспрессионное профилирование: субстракционная гибридизация, электронное сравнение EST-библиотек, «генные чипы» и так далее. Они позволяют устанавливать корреляцию между тем или иным фенотипическим признаком и активностью конкретных генов.

Позиционное клонирование, заключается в создании за счет инсерционного мутагенеза мутантов с нарушениями в интересующем нас признаке или свойстве, с последующим клонированием соответствующего гена как такового, который заведомо содержит известную последовательность (инсерция).

Вышеназванные методы не предполагают ни каких изначальных сведений о генах, контролирующих тот или иной признак. Отсутствие рационального компонента в данном случае является положительным обстоятельством, поскольку неограничен нашими сегодняшними представлениями о природе и генном контроле конкретного интересующего нас признака.

Кроме всего этого группа ученых, таких как Марк Адам (ведущий сотрудник института геномных исследований в штате Мэриленд – США,  частной исследовательской компании, занимающейся исключительной работой в области картирования генов), Крэйк Вентер (директор этого института) и соавторами, разрабатывается проект «Геном человека». Цель этого проекта заключается в выяснении последовательности оснований во всех молекулах ДНК в клетках человека. Одновременно должна быть установлена локализация всех генов, что помогло бы выяснить причину многих наследственных заболеваний и этим открыть пути к их лечению

Некоторые особенности новых технологий 21 века могут привести к большим опасностям, чем существующие средства массового уничтожения. Прежде всего, - это способность к саморепликации. Разрушающий и лавинно самовоспроизводящийся объект, специально созданный или случайно оказавшийся вне контроля, может стать средством массового поражения всех или избранных. Для этого не потребуются комплексы заводов, сложная организация и большие ассигнования. Угрозу будет представлять само знание: устройства, изобретённые и изготовленные в единичных экземплярах, могут содержать в себе всё, необходимое для дальнейшего размножения, действия и даже дальнейшей эволюции – изменению своих свойств в заданном направлении. Конечно, выше описаны вероятные, но не гарантированные варианты развития генной инженерии. Успех в этой отрасли науки сможет радикально поднять производительность труда и способствовать решению многих существующих проблем, прежде всего, подъему уровня жизни каждого человека, но, в то же время, и создать новые разрушительные средства.

 

 

 

 

 

Перспективы генной инженерии

 

Теперь умеют уже синтезировать гены, и с помощью таких синтезированных генов, введенных в бактерии, получают ряд веществ, в частности гормоны и интерферон. Их производство составило важную отрасль биотехнологии.

Так, в 1980 году гормон роста – соматотропин – получили из бактерии кишечной палочки. До развития генной инженерии его выделяли из гипофизов от трупов. Соматотропин, синтезированный в специально сконструированных клетках бактерий, имеет очевидные преимущества: он доступен в больших количествах, его препараты являются биохимически чистыми и свободными от вирусных загрязнений.

В 1982 году гормон инсулин стали получать в промышленных масштабах из бактерий, содержащих ген человеческого инсулина. До этого времени инсулин выделяли из поджелудочных желез забиваемых коров и свиней, что сложно и дорого.

Интерферон – белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое дает всего один литр бактериальной культуры. Ясно, что выигрыш от массового производства этого вещества очень велик. Очень важную роль играет также получаемый на основе микробиологического синтеза инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать и ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ).

Еще одно перспективное направление в медицине, связанное с рекомбинантной ДНК, – генная терапия. В этих работах, которые пока еще не вышли из экспериментальной стадии, в организм для борьбы с опухолью вводится сконструированная по методу генной инженерии копия гена, кодирующего мощный противоопухолевый фермент. Генную терапию начали применять также для борьбы с наследственными нарушениями в иммунной системе.

 

В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока; с помощью генетически измененного вируса создана вакцина против герпеса у свиней.

 

За и против

 

Несмотря на явную пользу от генетических исследований и экспериментов, само понятие «генная инженерия» породило различные подозрения и страхи, стало предметом озабоченности и даже политических споров. Многие опасаются, например, что какой-нибудь вирус, вызывающий рак у человека, будет введен в бактерию, обычно живущую в теле или на коже человека, и тогда эта бактерия будет вызывать рак. Возможно также, что плазмиду, несущую ген устойчивости к лекарственным препаратам, введут в пневмококк, в результате чего пневмококк станет устойчивым к антибиотикам и пневмония не будет поддаваться лечению. Такого рода опасности, несомненно, существуют.

Генная инженерия – это мощный способ изменить жизнь, но ее потенциал может представлять опасность, причем в первую очередь надо учитывать сложные и трудно предсказуемые эффекты, связанные с возможным воздействием на окружающую среду. Представьте себе некий яд, более дешевый в производстве, чем сложные гербициды с избирательным действием, но который не может быть использован в агротехнике из-за того, что он убивает полезные растения наравне с сорняками. Теперь представьте, что, допустим, в пшеницу, внедрили ген, делающий ее устойчивой к этому яду. Фермеры, засеявшие свои поля трансгенной пшеницей, могут безнаказанно опылять их смертоносным ядом, увеличивая свои доходы, но нанося непоправимый вред окружающей среде. С другой стороны, генетики могут достичь и противоположного эффекта, если выведут такую культуру, которая не нуждается в гербицидах.

Информация о работе Генная инженерия: возможности и перспективы