Контрольная работа по генетике

Автор работы: Пользователь скрыл имя, 18 Октября 2013 в 18:33, контрольная работа

Краткое описание

1. Строение и функции ДНК и РНК
2. Эпистатическое взаимодействие генов
3. Хромосомный механизм определения пола. Первичные и вторичные признаки.
4. Мутационная изменчивость. Основные положения мутационной теории Де Фриза.
5. Внутрихромосомные перестройки и их значение в селекции и эволюции.
6. Наследование признаков в панмиктической популяции.
7. Цели, задачи, методы и достижения в селекции животных.

Вложенные файлы: 1 файл

kontr_po_genetike-1.docx

— 284.10 Кб (Скачать файл)

Рис 12. Петлеобразная конъюгация при гетерозиготности по инверсии. Инвертированный участок (Б, В, Г, Д) заштрихован

В случае парацентрической инверсии образуется одна нормальная и одна инвертированная (фенотипически нормальная) хроматиды, дицентрическая хроматида с дупликацией и делецией (при расхождении хроматид она обычно разрывается на две) и ацентрическая хроматида с дупликацией и делецией (обычно утрачивается). В случае перицентрической инверсии образуется одна нормальная и одна инвертированная хроматиды, а также две хроматиды с дупликацией и делецией. Гаметы, несущие дефектные хромосомы, обычно не развиваются или погибают на ранних этапах онтогенеза. Но гаметы с инвертированной хромосомой развиваются в организмы, 50 % гамет которых нежизнеспособны. Т.о. мутация сохраняется в популяции. У человека наиболее распространенной является инверсия в 9 хромосоме, не вредящая носителю, хотя существуют данные, что у женщин с этой мутацией существует 30 % вероятность выкидыша.

Мутации, относящиеся к группе хромосомных перестроек, включают различные типы реорганизаций (аберраций) хромосом и перераспределение их генетического материала в пределах генома. Делеции и дупликации нарушают генный баланс, что ведёт к изменению признаков организма, инверсии изменяют лишь порядок расположения генов в хромосоме. Многие из этих изменений оказывают более или менее значительное влияние на фенотип, что свидетельствует о зависимости действия генов от их положения в геноме. Особое значение в процессе эволюции и селекции имеют точковые мутации. К группе точковых относят все мутационные изменения, при которых не удается цитологическими методами обнаружить какие-либо нарушения структуры отдельных хромосом. В эту группу включают как мелкие делеции, дупликации и инверсии, так и изменения наследственного кода на молекулярном уровне (истинные генные мутации). Хромосомные перестройки играют большую роль в эволюции организмов: дупликации представляют главный источник увеличения числа генов; инверсии и транслокации могут вести к генетической изоляции гомозиготных по ним особей, более плодовитых, чем гетерозиготы. Хромосомные перестройки могут быть использованы в практических целях для изменения групп сцепления генов, определяющих хозяйственно ценные признаки организмов.

 6.Наследование признаков в панмиктической популяции.

Популяция панмиктическая (греч. pan всё + лат. mixis смешение) — популяция  раздельнополых организмов, в которой равновероятно формирование любых брачных пар. Структура генофонда идеальной популяции описывается основным законом популяционной генетики – законом Харди-Вайнберга, который гласит, что «в идеальной стационарной популяции существует постоянное соотношение относительных частот аллелей и генотипов, которое при моногенном диаллельном определении признака описывается уравнением»:

(pA+qa)2= pAA+2p.qAa+q2aa=1

Коэффициенты  p2,p.q и q2 представляют собой ожидаемые относительные частоты каждого генотипа. Если известны относительные частоты аллелей p.q и общая численность популяции Nобщ, то мржно рассчитать ожидаемую, или расчетную абсолютную частоту (то есть численность особей) каждого генотипа. Для этого каждый член уравнения нужно умножить на Nобщ:

P2ААNобщ+2 p.qАаNобщ+q2aaNобщ=Nобщ

В данном уравнении: p2AANобщ – ожидаемая абсолютная частота (численность) доминантных гомозигот АА; 2pIqAaNобщ – ожидаемая абсолютная частота (численность) гетерозигот Аа; q2aaNобщ - ожидаемая абсолютная частота (численность) рецессивных гомозигот аа.

Выполнение закона Харди-Вайнберга в природных популяциях: разумеется, идеальных популяций в природе не существует. Однако в большинстве изученных популяциях закон Харди-Вайнберга выполняется с высокой точностью, поскольку:

  • Численность природных популяций достаточно большая;
  • Женские и мужские гаметы равноценны (то есть в большинстве случаев самцы и самки в равной степени передают свои аллели потомкам);
  • Большинство генов не влияет на образование брачных пар;
  • Мутации происходят достаточно редко;
  • Естественный отбор не оказывает заметного влияния на частоту большинства аллелей;
  • Большинство популяций в достаточной степени изолированы друг от друга.

Поэтому закон  Харди-Вайнберга широко используют в практических целях.

 

Практическое значение закона Харди–Вайнберга

 

1. В здравоохранении – позволяет оценить популяционный риск генетически обусловленных заболеваний, поскольку каждая популяция обладает собственным аллелофондом и, соответственно, разными частотами неблагоприятных аллелей. Зная частоты рождения детей с наследственными заболеваниями, можно рассчитать структуру аллелофонда. В то же время, зная частоты неблагоприятных аллелей, можно предсказать риск рождения больного ребенка.

Пример 1. Известно, что альбинизм – это аутосомно-рецессивное заболевание. Установлено, что в большинстве европейских популяций частота рождения детей-альбиносов составляет 1 на 20 тысяч новорожденных. Следовательно,

q2aa = 1/20000 = 0,00005; qa = 0,00005–1/2 = 0,007; pA = 1 – 0,007 = 0,993 ≈ 1

Поскольку для редких заболеваний рА ≈ 1, то частоту гетерозиготных носителей можно рассчитать по формуле 2·q. В данной популяции частота гетерозиготных носителей аллеля альбинизма составляет 2 q Аа = 2 ´ 0,007 = 0,014, или примерно каждый семидесятый член популяции.

Пример 2. Пусть в одной из популяций у 1% населения выявлен рецессивный аллель, который не встречается в гомозиготном состоянии (можно предположить, что в гомозиготном состоянии этот аллель летален). Тогда 2 q Аа = 0,01, следовательно, qa = 0,01:2 = 0,005. Зная частоту рецессивного аллеля, можно установить частоту гибели зародышей–гомозигот: q2aa = 0,0052 = 0,000025 (25 на миллион, или 1 на 40 тысяч).

2. В селекции – позволяет выявить генетический потенциал исходного материала (природных популяций, а также сортов и пород народной селекции), поскольку разные сорта и породы характеризуются собственными аллелофондами, которые могут быть рассчитаны с помощью закона Харди-Вайнберга. Если в исходном материале выявлена высокая частота требуемого аллеля, то можно ожидать быстрого получения желаемого результата при отборе. Если же частота требуемого аллеля низка, то нужно или искать другой исходный материал, или вводить требуемый аллель из других популяций (сортов и пород).

3. В экологии – позволяет выявить влияние самых разнообразных факторов на популяции. Дело в том, что, оставаясь фенотипически однородной, популяция может существенно изменять свою генетическую структуру под воздействием ионизирующего излучения, электромагнитных полей и других неблагоприятных факторов. По отклонениям фактических частот генотипов от расчетных величин можно установить эффект действия экологических факторов. (При этом нужно строго соблюдать принцип единственного различия. Пусть изучается влияние содержания тяжелых металлов в почве на генетическую структуру популяций определенного вида растений. Тогда должны сравниваться две популяции, обитающие в крайне сходных условиях. Единственное различие в условиях обитания должно заключаться в различном содержании определенного металла в почве). 

 

Генетическая структура  популяций 

 

Каждая популяция обладает собственной  генетической структурой. Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором  и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы, эффект основателя, миграции и др.). Для описания генетической структуры популяций используются понятия «аллелофонд» и «генофонд».

Аллелофонд. Аллелофонд популяции – это совокупность аллелей в популяции. Если рассматриваются два аллеля одного гена: А и а, то структура аллелофонда описывается уравнением: p +  qa = 1. В этом уравнении символом pA обозначается относительная частота аллеля А, символом qa – относительная частота аллеля а.

Популяции, в которых структура  аллелофонда остается относительно постоянной в течение длительного времени, называются стационарными.

Если рассматриваются три аллеля одного гена: а1, а2,, а3, то структура аллелофонда описывается уравнением: p а1 + q а2 + r а3 = 1. В этом уравнении символами p, q, r обозначаются соответствующие частоты аллелей.

Если рассматриваются несколько  аллелей нескольких генов (a, b, c), то структура аллелофонда описывается системой уравнений:

p1 a1 + p2 a2 + p3 a3 + ... + pi ai = 1

q1 b1 + q2 b2  + q3 b3 + ... + qi bi = 1

r1 c1  + r2 c2  +  r3 c3 + ... + ri ci  = 1

.......................................................

В этих уравнениях символами pi, qi, ri обозначены относительные частоты аллелей разных генов. Однако в простейших случаях рассматриваются только моногенные диаллельные системы, например: А–а. В популяции с общей численностью особей Nобщ и известной численностью особей с генотипами АА, Аа, аа относительные частоты аллелей рассчитываются по формулам:  

 

p (A) =

2 Í N (AA) + N (Aa)

2 Í N общ.


 

q (a) =

2 Í N (aa) + N (Aa)

2 Í N общ.


 

или q (a) = 1 – р (А)

 
 

 

Генофонд. Термин генофонд употребляется в разных значениях. Основоположник учения о генофонде и геногеографии Александр Сергеевич Серебровский называл генофондом «совокупность всех генов данного вида..., чтобы подчеркнуть мысль о том, что в лице генофонда мы имеем такие же национальные богатства, как и в лице наших запасов угля, скрытых в наших недрах» (1928). Однако это выражение в настоящее время используется для определения генетического потенциала, а генофондом называют совокупность всех генотипов в популяции.

При изучении природных популяций  часто приходится сталкиваться с  полным доминированием: фенотипы гомозигот АА и гетерозигот Аа неразличимы. Кроме того, в природе широко распространено полигенное определение признаков, причем типы взаимодействия неаллельных генов (комплементарность, эпистаз, полимерия) не всегда известны. Поэтому на практике часто изучают не генофонд, а фенофонд популяций, то есть соотношение фенотипов. В настоящее время развивается раздел генетики популяций, который называется фенетика популяций.

 

 

 

7.Цели, задачи, методы и достижения в селекции животных.

Селе́кция — наука о методах создания и улучшения пород животных, сортов растений, штаммов микроорганизмов. Создание пород домашних животных стало практиковаться вслед за их приручением и одомашниванием, которое началось 10- 12 тыс. лет назад. Содержание в неволе снижает действие стабилизирующей формы естественного отбора. Различные формы искусственного отбора приводят к созданию многообразия пород домашних животных.

Особенности селекции животных. В селекции животных по сравнению с селекцией растений есть ряд особенностей. Во-первых, для животных характерно в основном половое размножение, поэтому любая порода является сложной гетерозиготной системой, и оценка генетических задатков качеств, которые у самцов фенотипически не проявляются (яйценоскость, жирномолочность), производится по потомству и родословной. Во-вторых, у животных часто поздняя половозрелость, смена поколений происходит через несколько лет. В-третьих, потомство у птиц и млекопитающих немногочисленное. Поэтому в селекционной работе с животными важное значение приобретает анализ совокупности внешних признаков.

Одомашнивание животных.Главным фактором одомашнивания служит искусственный отбор организмов, отвечающих требованиям человека. У домашних животных весьма развиты отдельные признаки, часто бесполезные или даже вредные для их существования в естественных условиях, но полезные для человека.Одомашнивание привело к ослаблению действия стабилизирующего отбора, что резко повысило уровень изменчивости и расширило его спектр. При этом одомашнивание сопровождалось отбором, вначале бессознательным (отбор тех особей, которые лучше выглядели, имели более спокойный нрав, обладали другими ценными для человека качествами), затем осознанным, или методическим. Широкое использование методического отбора направлено на формирование у животных определенных качеств, удовлетворяющих человека. Процесс одомашнивания новых животных для удовлетворения потребностей человека продолжается и в наше время. Например, для получения модной и высококачественной пушнины создана новая отрасль животноводства — пушное звероводство.

Отбор и типы скрещивания. Отбор родительских форм и типы скрещивания животных проводятся с учетом цели, поставленной селекционером. Это может быть целенаправленное получение определенного экстерьера, повышение молочности, жирности молока, качества мяса и т. д. Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства. Поэтому необходимо хорошо знать их родословную. В племенных хозяйствах при подборе производителей всегда ведется учет родословных, в которых оцениваются экстерьерные особенности и продуктивность родительских форм в течение ряда поколений. По признакам предков, особенно по материнской линии, можно судить с известной вероятностью о генотипе производителей.

Информация о работе Контрольная работа по генетике