Контрольная работа по дисциплине "Биология"

Автор работы: Пользователь скрыл имя, 29 Ноября 2014 в 14:18, контрольная работа

Краткое описание

1. Морфологическая характеристика плесневых грибов и способы их размножения.
2. Особенности энергетических процессов в мире микроорганизмов. Полное и неполное окисление. Примеры .

Содержание

Введение
1. Морфологическая характеристика плесневых грибов и способы их размножения.
2. Особенности энергетических процессов в мире микроорганизмов. Полное и неполное окисление. Примеры .
Библиографический список

Вложенные файлы: 1 файл

mikrobiologia - копия.docx

— 37.22 Кб (Скачать файл)

  В отличие от неорганических восстановителей, которые выполняют роль только доноров водорода, экзогенные органические восстановители могут одновременно служить и источниками углерода (фотоорганогетеротрофия).

  Способность использовать органические соединения той или иной степени присуща всем фотосинтезирующим бактериям. Для фотолитогетеротрофов они служат только источниками углеродного питания, для фотоорганоавтотрофов - только донорами водорода. Например, несерные пурпурные бактерии рода Rhodopseudomonas sp. могут осуществлять фотосинтез, используя в качестве донора водорода изопропанол, восстанавливая при этом диоксид углерода и продуцируя ацетон:энергия АТФ

 

СО2 +2СН3СНОНСН3→(СН2О)+ 2СН3СОСН3 +Н2О

 

Энергетический метаболизм хемотрофов, использующих процессы брожения

  Из трех путей образования АТФ субстратное фосфорилиронание наиболее простой. Такой тип энергетического метаболизма характерен для многих бактерий и дрожжей, осуществляющих различные виды брожения.

  Брожение идет в анаэробных условиях и может быть определено как процесс биологического окисления сложных органических субстратов для получения энергии, при котором конечный акцептор водорода (также органическое вещество) образуется в ходе распада исходного субстрата. При этом одни органические вещества служат донорами водорода и окисляются, другие - акцепторами водорода и в результате восстанавливаются. Перенос водорода от доноров к акцепторам осуществляется с помощью окислительно - восстановительных ферментов.

  Кроме углеводов многие бактерии способны сбраживать самые разнообразные соединения: органические кислоты, аминокислоты, пурины и т. д. Условие, определяющее способность вещества к сбраживанию, - наличие в его структуре не полностью окисленных (восстановленных) атомов углерода. Только в этом случае возможна внутри - и межмолекулярная перестройка субстрата за счет сопряжения окислительных и восстановительных реакций без участия кислорода.

  В результате процессов брожения в среде накапливаются вещества, в которых степень окисления углерода может быть как выше, так и ниже, чем в исходном субстрате. Однако строгое равновесие окислительных и восстановительных процессов при брожении приводит к тому, что средняя степень окисления углерода остается такой же, как и у субстрата.

  Существует несколько типов брожений, названия которым даются по конечному продукту: спиртовое (осуществляют дрожжи и некоторые виды бактерий), пропионовокислое (пропионовые бактерии), метановое (метанобразующие бактерии), маслянокислое (маслянокислые бактерии) и т.д.

  Многие микроорганизмы, осуществляющие процессы брожения,- облигатные анаэробы, не способные развиваться в присутствии кислорода и даже более слабых окислителей. Другие - факультативные анаэробы - могут расти как в кислородной среде, так и в бескислородной. Это отличительное свойство факультативных анаэробов объясняется тем, что они могут изменять способ образования АТФ переключаться с окислительного фосфорилирования при наличии в среде кислород на субстратное его отсутствии. Характерная особенность процессов биологического окисления - их многостадийность. обеспечивающая постепенное выделение свободной энергии, заключенной в сложных органических субстратах.

  Многостадийность энергетического метаболизма принципиально необходима для жизнедеятельности любого организма. Если бы в клетке окисление сложных веществ протекало в одну стадию, то одновременное освобождение нескольких сотен килоджоулей привело бы к выделению большого количества тепла, резкому повышению температуры и к гибели клетки, поскольку эффективность использования энергии ограничена возможностями системы АДФ—АТФ.

 

Простейший пример анаэробного окисления глюкозы - молочнокислое брожение. Оно вызывается молочнокислыми бактериями, факультативными анаэробами, не образующими спор. Превращение ПВК при молочнокислом брожении протекает следующим образом:

 

 

СН3СОСООН + НАД*Н2, — СН3СНОНСООН + НАД

 

 

Значительно сложнее механизм пропионовокислого брожения, служащего источником энергии группе пропионовых бактерий, факультативных анаэробов, неподвижных не спорообразующих бактерий рода Propionibacterium. Эти бактерии синтезируют конечный акцептор, присоединяя к молекуле ПВК СО2. Процесс известен под названием гететеротрофной ассимиляции СО2. В результате образуется щавелевоуксусная кислота - акцептор водорода для НАД*Н2. Дальнейшие ферментативные реакции приводят к образованию пропионовой кислоты.

  Маслянокислое брожение осуществляют бактерии род Clostridium. Таким образом, энергетический выход процесса брожения невелик, поскольку органические вещества не окисляются полностью и часть энергии исходного субстрата сохраняется в достаточно сложных продуктах брожения. В большинстве случаев при сбраживании глюкозы клетка запасает две молекулы АТФ на 1 моль глюкозы.

  Для получения энергии, необходимой для синтеза клечного вещества и других жизненных функций, микроорганизмам, осуществляющим процессы брожения, приходится перерабатывать большое количество органических веществ.

  Именно в силу этих причин на очистных станциях систем водоотведения анаэробные процессы брожения используют для обработки концентрированных субстратов – осадков сточных вод.

  Энергетический метаболизм хемоорганотрофов, использующих процесс дыхания.

  Большинство гетеротрофных организмов получают энергию в процессе дыхания - биологического окисления сложных органических субстратов, являющихся донорами водорода. Водород от окисляемого вещества поступает в дыхательную цепь ферментов. Дыхание называют аэробным, если роль конечного акцептора водорода выполняет свободный кислород. Микроорганизмы, способные существовать только в присутствии кислорода, называются облигатными аэробами.

  В качестве источников энергии - доноров водорода -хемоорганогетеротрофы в процессе дыхания могут использовать разнообразные окисляемые органические соединения: углеводы, жиры, белки, спирты, органические кислоты и т. д. Суммарно процесс дыхания при окислении углеводов выражается следующим уравнением:

 

С6Н12О6 + 6О→ 6СО2 + 6Н2О + 2820 кДж

 

  Начальная стадия превращения углеводов вплоть до образования ПВК полностью идентична ферментативным реакциям окисления углеводов в процессе брожения.

  В клетках аэробов ПВК может быть окислена полностью в результате ряда последовательных реакций. Совокупность этих превращений составляет цикл, именуемый циклом Кребса или циклом ди- и трикарбоновых кислот (ЦТК).

  Водород, отнятый дегидрогеназами в цикле, передается в дыхательную цепь ферментов, которая у аэробов кроме НАД включает ФАД, систему цитохромов и конечный акцептор водорода - кислород. Передача водорода по этой цепи сопровождается образованием АТФ.

  Первый этап фосфорилирования связан с передачей водорода от первичной дегидрогеназы на ФАД. Второе фосфорилирование происходит при переходе электрона с цитохрома b на цитохром , третье - при передаче электрона кислороду. Таким образом, на каждые два атома водорода (электрона), поступивших в дыхательную цепь, синтезируется три молекулы АТФ. Образование АТФ одновременно с процессом переноса протона и электрона по дыхательной цепи ферментов называется окислительным фосфорилированием. В некоторых случаях электрон включается в дыхательную цепь на уровне ФАД или даже цитохромов. При этом соответственно уменьшается количество синтезируемых молекул АТФ.

  Суммарный энергетический итог процесса окисления 1 моля глюкозы составляет 38 молекул АТФ, из них 24 - при окислении ПВК в цикле Кребса с передачей водорода в дыхательную цепь ферментов. Таким образом, основное количество энергии запасается именно на этой стадии. Замечательно то, что цикл Кребса универсален, т.е. характерен и для простейших, и для бактерий, и для клеток высших животных и растений.

  Промежуточные соединения цикла частично используются для синтеза клеточного вещества.

  Окисление питательных веществ не всегда идет до конца. Некоторые аэробы окисляют органические соединения частично, при этом в среде накапливаются промежуточные продукты окисления.

  Некоторые микроорганизмы в процессе дыхания в качестве конечного акцептора водорода используют не кислород, а окисленные соединения азота (нитриты, нитраты) хлора (хлораты и перхлораты), серы (сульфаты, сульфит тиосульфата), углерода (СО2), хрома (хроматы и бихроматы). Такой тип дыхания называется анаэробным.

  Микроорганизмы, осуществляющие процесс дыхания за счет окисленных соединений азота и хлора, относятся факультативным анаэробам. Они имеют две ферментативные системы, позволяющие им переключаться с аэробного дыхния на анаэробное и наоборот в зависимости от присутствия в среде того или иного конечного акцептора.

  Если в среде одновременно присутствуют нитраты и молекулярный кислород, то в первую очередь будет использоваться акцептор, позволяющий получить большее количество энергии. Аэробное дыхание сопровождает тремя фосфорилированиями, анаэробное - двумя. Тем не менее, если концентрация кислорода в среде невелика, а концентрация нитратов намного превышает ее, микроорганизмы используют нитраты. Решающим условием в этом случае является свободная энергия реакции восстановления акцептора, которая зависит от его концентрации. Анаэробное дыхание за счет нитратов называется денитрификацией

  Окисленные соединения серы, хрома, углерода играют роль конечных акцепторов для разных видов микроорганизмов относящихся к облигатным анаэробам.

  У сульфатредуцирующих микроорганизмов обнаружена цепь переноса электронов, включающая несколько ферментов но последовательность их действия остается неясной.

  При употреблении сульфатов в качестве конечного акцептора водорода микроорганизмы восстанавливают их до сульфидов:

 

(органическое вещество — донор  водорода) + SO4→Н2S+4Н2О

  Анаэробное дыхание с использованием диоксида углерода сопровождается образованием метана.

 Энергетический метаболизм хемолитоавтотрофов

  Окисление восстановленных минеральных соединений азота, серы, железа служит источником энергии для хемолитотрофных микроорганизмов. Деление хемолитотрофных микроорганизмов на группы основано на специфичности каждой группы по отношению к окисляемому соединению. Различают нитрифицирующие бактерии, железобактерии, бактерии, окисляющие соединения серы.

  Нитрифицирующие бактерии окисляют аммонийный азот до нитратов. Процесс называется нитрификацией и идет в две фазы, за каждую из которых ответственны свои возбудители:

 

NH4+2O2→NO2+2H2O+557кДж/моль (1)

 

2NO2+O2→2NO3+146 кДж/моль (2)

 

  Окисление аммиака до нитритов с передачей электронов в дыхательную цепь служит энергетическим процессом для группы нитрозобактерий. Окисление аммонийного азота — многостадийный процесс, при котором в качестве промежуточных продуктов образуются гидроксиламин (NН2ОН) и гипонитрит (NОН). Энергетическим субстратом, окисляемым в дыхательной цепи, служит гидроксиламин.

  Железобактерии (хемолитоавтотрофы) не представляют собой единой таксономической единицы. Этим термином объединяют микроорганизмы, окисляющие восстановленные соединения железа для получения энергии:

 

4FеСО3 + O2 + 6Н2O→4Fе(ОН)3 +4СО2+ 167 кДж/моль

   В транспорте электронов от двухвалентного железа к кислороду принимают участие хиноны и цитохромы. Перенос электронов сопряжен с фосфорилированием.

  Эффективность использования энергии у этих бактерий настолько мала, что для синтеза 1 г клеточного вещества им приходится окислять около 500 г углекислого железа.

  Бактерии, окисляющие соединения серы и способные к автотрофной ассимиляции СО2, относятся к группе тионовых бактерий. Энергию для конструктивного метаболизма тионовых бактерий получают в результате окисления сульфидов, молекулярной серы, тиосульфатов и сульфитов до сульфатов:

 

S2-+2O2→SO4+794 кДж/моль

 

S0+H2O+1,5O2→H2SO4+ 585 кДж/моль

 

S2O3+H2O+2O2→2SO4+2H+936 кДж/моль

 

SO3 + 0,5O2→SO4 +251 кДж/моль

 

 Дыхательная цепь тионовых бактерий содержит флавопротеиды, убихиноны, цитохромы.

  Механизм ассимиляции СО2 в конструктивных целях у всех хемолитоавтотрофов сходен с таковым у фотосинтезитезирующих автотрофов, использующих в качестве донора водорода воду. Основное отличие состоит в том, что в процессе хемосинтеза кислород не выделяется.

  Таким образом конструктивные и энергетические процессы протекают в клетке одновременно. У большинства прокариот они тесно связаны между собой. Метаболизм прокариот, как энергетический, так и конструктивный, отличается чрезвычайным разнообразием, которое является результатом способности этих форм жизни использовать в качестве источников энергии и исходных субстратов для построения веществ тела самый широкий набор органических и неорганических соединений.

  Энергетический метаболизм в целом сопряжен с биосинтетическими и другими энергозависимыми процессами, происходящими в клетке, для протекания которых он поставляет энергию, восстановитель и необходимые промежуточные метаболиты. Сопряженность двух типов клеточного метаболизма не исключает некоторого изменения их относительных масштабов в зависимости от конкретных условий.

  Энергетические процессы прокариот по своему объему (масштабности) значительно превосходят процессы биосинтетические, и протекание их приводит к существенным изменениям в окружающей среде. Разнообразны и необычны в этом отношении возможности прокариот, способы их энергетического существования. Все это вместе взятое сосредоточило внимание исследователей в первую очередь на изучении энергетического метаболизма прокариот.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Библиографический  список

 

1. Бакулов И. А. «Энергетический метаболизм прокариот» /Ветеринария/, 2006 №1 стр 38.

2. Бейли, Дж. Э, Оллис, Дэвид Ф Основы биохимической инженерии. М.1989.

3. Воробьев А.А. с соавт. Микробиология. М.: Медицина. 1994.

4. Гусев М.В., Минеева Л.А. Микробиология: Учебник. М.: Изд-во МГУ,1992.

5. Емельяненко П.А. с соавт. Ветеринарная микробиология. М.: Колос. 1982.

6. Колешко О.И. Микробиология. М.: Высшая школа. 1982.

7. Мишустин Е.Н., Емцев В.Т. Микробиология. М.:Колос.1978.

8. Радчук Н.А. Ветеринарная микробиология и иммунология. М.: Агропромиздат. 1991

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Контрольная работа по дисциплине "Биология"