Лекарственное растительное сырье, содержащее фенолгликозиды

Автор работы: Пользователь скрыл имя, 13 Апреля 2014 в 14:04, курсовая работа

Краткое описание

Фенологликозидами называется группа гликозидов, агликоном которых являются простые фенолы, которые при гидролизе расщепляются на агликоны, содержащие одну или несколько гидроксильных фенольных групп при одном бензольном кольце и сахар, который связан через гидроксил и оказывающие дезинфицирующее действие на дыхательные пути, почки и мочевые пути.

Содержание

Введение

1. Фенольные гликозиды

2. Физико- химические свойства. Химическое строение фенолгликозидов

3. Фармакологические свойства фенолгликозидов

4. Методы выделения и идентификации

5. Качественное определение

6. Методики обнаружения фенолгликозидов

7. Количественное определение

7.1 Титриметрический метод количественного определения

7.2 Инструментальные методы количественного определения

8. ЛР и ЛРС, содержащие феногликозиды

8.1 Брусника обыкновенная

8.2 Толокнянка обыкновенная

8.3 Ива

8.4 Красная щётка

8.5 Родиола розовая

8.6 Бадан толстолистный

Заключение

Используемая литература

Вложенные файлы: 1 файл

KURSOVAYa_RABOTA.docx

— 66.90 Кб (Скачать файл)

 

С арбутином связаны антиоксидантные свойства растений, содержащих данный гликозид. Арбутин тормозит перекисное окисление линолевой кислоты и обладает способностью нейтрализовать свободные радикалы в бесклеточных системах in vitro [5, 9].

 

На основе изучения кинетики доказано, что арбутин выступает в роли конкурентного ингибитора тирозиназы, и его действие является обратимым. Арбутин конкурирует с L-тирозином в процессе связывания последнего с активным центром фермента [5].

 

В исследовании на добровольцах установлено, что арбутин на 43.5% уменьшал развитие пигментации кожи при ультрафиолетовом облучении. В связи с этим предлагается использовать отвары растений для отбеливания кожи в косметологии [4].

 

Фенолгликозиды родиолозид, салидрозид и розавин обладают ярко выраженными адаптогенными и стимулирующими нервную систему свойствами, подобно препаратам женьшеня, аралии и элеутерококка. Салициловая кислота и ее производные известны как противовоспалительные, жаропонижающие и болеутоляющие средства [6, 9].

 

Салидрозид обладает бифункциональными свойствами, т.е. проявляет себя как ингибитор или инициатор окислительных процессов. Проявление того или иного свойства зависит от концентрации салидрозида в реакционной среде- при низких концентрациях салидрозид выступает как ингибитор окислительных процессов, при высоких - как инициатор [6].

 

По-видимому, этими химическими свойствами салидрозида определяется и его фармакологический эффект. В опытах на мышах, в малых дозах салидрозид действует стимулирующе на спонтанную активность мышей, а при больших дозах снижает двигательную активность интактных животных. По- разному влияет салидрозид на холинергические и моноаминергические процессы в центральной нервной системе в зависимости от доз используемого препарата [4, 6].

 

Фенолгликозид салицин, используется в народной медицине при лихорадочных состояниях, при воспалениях слизистых ротовой полости и верхних дыхательных путей (полоскания), при кожных заболевания (примочки) [5].

 

Учитывая фармакологические свойства салицина и используя достижения синтетической химии в 20 столетии научными работниками разных стран мира было синтезировано значительное количество органических соединений. Они со временем нашли широкое применение в фармации и научно- практической медицине как противовоспалительные и анальгетические средства [2, 4, 5].

 

4. Методы выделения и  идентификации

 

Фенольные гликозиды из растительного материала извлекают этиловым и метиловым спиртами (96, 70 и 40є). В дальнейшем очистку спиртовых извлечений ведут общепринятым для гликозидов методом [12, 13, 14, 15].

 

Выделение индивидуальных соединений приводят, как правило, методом адсорбционной хроматографии на полиамиде, силикагеле, целлюлозе. В качестве элюирующих смесей используется вода и водный спирт, если адсорбентом служит полиамид или целлюлоза, либо различные смеси органических растворителей для всех перечисленных адсорбентов [1, 13, 14].

 

Фенольные гликозиды в лекарственном растительном сырье могут быть идентифицированы хроматографией в тонком слое сорбента или на бумаге [1, 12, 13, 14].

 

Для хроматографирования в тонком слое сорбента используют системы растворителей: 1) n-бутанол - уксусная кислота - вода (4:1:5); 2) n-бутанол - уксусная кислота - вода-ксилол (6:2:3:4); 3)хлороформ - метиловый спирт (8:2) [1, 12, 13, 14].

 

При хроматографии на бумаге используют 5, 10 и 15% - ную уксусную кислоту [1].

 

Для индивидуальных веществ определяют t-плавления, удельное вращение, снимают УФ, ИК спектры [1, 12, 14, 15].

 

Рассмотрим УФ и ИК спектры на примере арбутина. В связи с наличием в молекуле фенольных гликозидов ароматических С-С связей фенольные гликозиды имеют макисмум поглощения в УФ спектре при 270-300 нм. Максимум поглощения арбутина находится при 287 нм (в составе арбутина есть остаток гидрохинона с достаточной сопряжённой системой) и может быть использован как для качественной характеристики, так и количественного определения арбутина а растительном материале. При анализе УФ-спектров у растений, содержащих арбутин можно отметить, что на них присутствуют 2 максимума поглощения, характерных для данного соединения при 220 и 284 нм, причем интенсивность (выраженность) пиков соответствует содержанию арбутина в исследуемых видах. Например, при исследовании толокнянки, брусники, зимолюбки, черники и голубики, наибольшая интенсивность пика при 220 нм характерна для толокнянки, брусники и зимолюбки, менее выражены пики в этой области для черники и голубики (рисунок 6) [12, 14].

 

Рисунок 6 - УФ-спектры этанольных экстрактов листьев брусники (1), толокнянки (2), зимолюбки (3), черники (4) и голубики (5)

 

В ИК спектре арбутина имеются характерные полосы при 3200- 3400 смЇ№, обусловленные наличием спиртовых и фенольных гидроксильных групп; полоса 1515,1460 , 1440 смЇ№ типична для С=С- связей. Имеется ряд полос в области 800-1300 смЇ№ (область “отпечатка пальцев”). Совпадение спектров исседуемого гликозида со спектром достоверного образца указывает на идентичность соединения. Для идентификации фенольных гликозидов широко используются химические превращения, анализ, ацетилирование, метилирование и т.д. и сравнение продуктов превращения с литературными данными для предполагаемого гликозида [12, 14].

 

Также сейчас распространяется идентификация фенолгликозидов с помощью метода ВЭЖХ [16, 20]. На рисунке ниже (риcунок 7) показана ВЭЖ-хроматограмма водного экстракта зимолюбки зонтичной, на которой по УФ-спектрам в сравнении с достоверным образцом идентифицирован арбутин. В данном конкретном случае, анализ проводился на высокоэффективном жидкостном хроматографе «Миллихром-А-02» с последующей компьютерной обработкой результатов исследования с помощью программы МультиХром-СПЕКТР для Windows. В качестве неподвижной фазы использовали колонку ProntoSIL 120-5-C18 AQ, №80303 размером 2,0Ч75 мм, размер частиц - 5,0 мкм; в качестве подвижной фазы - [4M LiClO4+0,1M HClO4] : H2O в соотношении 5:95. Скорость подачи элюента - 100,00 мкл/мин. Температура - 40 °C. Давление - 2,0 MPa. Продолжительность анализа - 115 мин. Параллельно с испытуемым раствором в хроматограф вводились растворы достоверных образцов арбутина, гидрохинона и рутина. Детектирование данных веществ проведены по УФ-спектрам при длинах волн 210-300 нм [14].

 

 

Рисунок 7 - ВЭЖ-хроматограмма водного экстракта зимолюбки зонтичной

 

Существенную практику препаративного выделения индивидуальных растительных соединений из-за трудоемкости технологических приемов и высокой себестоимости конечного продукта следует считать оправданной при наличии в них преобладающих компонентов [2].

 

5 .Качественное определение

 

Фенольные гликозиды, имеющие свободную гидроксильную группу, дают все реакции, характерные для фенолов, например, с железоаммониевыми квасцами, реакцию диазотирования и др [1, 11].

 

В случае если фенольный гидроксид гликозирован, как у салицина, реакции проводят после предварительного гидролиза гликозида кислотами или ферментами. Эти же качественные реакции используют для обнаружения фенольных гликозидов на хроматограммах [1, 13].

 

В случае хроматографирования в тонком слое силикагеля хроматограммы можно обработать кроме перечисленных реактивов еще и 4%- ной Н2SO4 в абсолютном этиловым спирте [13].

 

При этом фенольные гликозиды в зависимости от строения обнаруживаются в виде желтых, красных, оранжевых и голубых пятен [13].

 

При обработке хроматограмм раствором нитрата серебра и щелочью фенольные гликозиды обнаруживаются в виде коричневых пятен с различными оттенком [1, 13].

 

При обработке хроматограмм реактивом Паули фенольные гликозиды в зависимости от строения проявляются в виде желтых, оранжевых или красных пятен [1, 13].

 

6. Методики обнаружения  фенольных гликозидов

 

Ниже я приведу некоторые возможные методики обнаружения фенольных гликозидов в ЛРС, описанные в литературе и НД [1, 2, 8, 12-15].

 

1. 0.5 гр измельченного сырья кипятят с 10 мл Н2О 2-3 минуты и после охлаждения фильтруют. К 1 мл фильтрата прибавляют кристаллик сульфата закисного Fe, жидкость окрашивается сначала в сиреневый, затем темно- фиолетовый цвет, и наконец, образуется темно- фиолетовый осадок (арбутин) [1].

 

2. К 1 мл фильтрата (в фарфоровой  чашке) прибавляем 4 мл раствора аммиака  и 1 мл 10% раствора Na фосфорно - молибденовокислого в 10%- ной HCl; появляется синее окрашивание (арбутин) [1, 2].

 

3. 0.5 гр мелкоизмельченного растительного сырья заливают 5 мл этилового спирта и экстрагируют при периодическом встряхивании и слабом нагревании на водяной бане в течение 1 часа [1, 14].

 

Полученное извлечение с помощью капилляра наносят на бумагу (3-4 прикосновения капилляра) и хроматографируют восходящим способом в 5%- ной уксусной кислоте до прохождения фронта растворителя 15-17 см (хроматограмма проходит в течение 1 часа при использовании бумаги FN-3). Хроматограмму вынимают, высушивают, обрабатывают раствором 10%- ной спиртовой щелочи и затем реактивом Паули [14].

 

Арбутин имеет самое высокое значение R=0.75, отделяется от сопутствующих гликозидов и проявляются в виде ярко-красного пятна. Аналогичные результаты можно получить на пластинке “Силуфол” при хроматографировании в системе хлороформ-этиловый спирт (7:3) с последующей обработкой раствором щелочи и реактивом Паули [14].

 

Хроматограммы до и после обработки реактивами целесообразно просматривать в УФ свете с целью идентификации сырья по отдельным компонентам [16].

 

Схема хроматограммы экстракта брусники показана на рисунке 8 [14].

 

 

Рисунок 8 - Схема хроматограммы экстракта брусники

 

1-е направление - 15% уксусная  кислота;

 

2-е направление - БУВ (н-бутанол - уксусная

 

кислота - вода)

 

4. Согласно ГФ РБ и  Европейской Фармакопее [16, 17] идентификацию  фенольных гликозидов в листьях  толокнянки проводят методом  тонкослойной хроматографии. К 0.5 г. измельченного сырья прибавляют 5 мл смеси из равных объемов  метанола и воды, нагревают с  обратным холодильником в течение 10 минут. Горячее извлечение фильтруют. Фильтр промывают смесью из  равных объемов метанола и  воды и доводят до объема 5 мл  этим же растворителем.

 

В качестве раствора сравнения используют 25 мг арбутина, 25 мг галловой кислоты и 25 мг гидрохинона растворяют в метаноле и доводят до объема 10,0 мл этим же растворителем.

 

Пластинка: ТСХ пластинка со слоем силикагеля.

 

Подвижная фаза: кислота муравьиная безводная-вода-этилацетат (6:6:88 об/об/об).

 

Наносимый объем пробы: 10 мкл раствора сравнения и 20 мкл испытуемого раствора в виде полос.

 

Фронт подвижной фазы: не менее 15 см от линии старта.

 

Высушивание: при температуре от 105 до 110 С до исчезновения запаха растворителей.

 

Проявление: пластинку опрыскивают раствором 10 г/л дихлоринохлоримида в метаноле. Затем опрыскивают раствором 20 г/л натрия карбоната безводного. Просматривают при дневном свете.

 

Согласно ГФ РБ [14] идентификацию арбутина в листьях брусники проводят следующим образом.

 

Испытуемый раствор. К 0,5 г измельченного сырья прибавляют 5 мл смеси из метанола и воды (50:50, об/об) и кипятят с обратным холодильником в водяной бане в течение 10 мин. Горячее извлечение фильтруют. Фильтр и пробирку промывают смесью из метанола и воды (50:50, об/об) и доводят до объема 5 мл этим же растворителем.

 

Раствор сравнения. 2,5 мг арбутина растворяют в 5 мл метанола.

 

Пластинка. ТСХ пластинка со слоем силикагеля GР.

 

Подвижная фаза: этилацетат -- кислота муравьиная безводная -- вода (44:3:3,об/об/об).

 

Наносимый объем пробы: по 10 мкл в виде полос.

 

Фронт подвижной фазы: не менее 15 см от линии старта.

 

Высушивание: при температуре от 100°С до 105°С.

 

Проявление: пластинку опрыскивают раствором 10 г/л 4-аминопиразолона, затем раствором 20 г/л калия ферроцианида и проявляют в парах аммиака. Просматривают при дневном свете.

 

Результаты: Арбутин: зона красного цвета. На хроматограмме испытуемого раствора в верхней половине могут обнаруживаться и другие зоны. Пирозид - зона красного цвета.

 

7. Количественное определение

 

При количественном определении фенолгликозидов применяют химические (титриметрические) и инструментальные (спектрофотометрические и хроматографические) методы анализа.

 

Нормативно-техническая документация предусматривает количественное определение арбутина в листьях толокнянки и брусники. Метод определения основан на иодометрическом титровании гидрохинона, полученного после извлечения и гидролиза арбутина [16].

 

Разработан спектрофотометрический метод определения салидрозида в экстрактек корневищ с корнями родиолы розовой, который можно использовать для количественного определения салидрозида в растительном материале [1].

 

Исходя из строения фенольных гликозидов и их УФ спектров, возможно количественное хромато-спектрофотометрическое определение всех представителей этой группы [14].

 

И хотя сейчас всё более широкое применение получают инструментальные методы установления колличественного содержания фенолгликозидов [16], ещё применяется и включён в НТД [16] титриметрический метод количественного определения.

 

Рассмотрим подробнее методы количественного определения фенолгликозидов в ЛРС.

 

7.1 Титриметрический метод  количественного определения фенолгликозидов [16]

 

Около 0.5 гр (точная навеска) сырья, измельченного и просеянного через сито с диаметром отверстий 1 мм, помещают в колбу вместимостью 100 мл, заливают 50 мл воды и нагревают с обратным холодильником поддерживая слабое кипение, в течение 30 мин. Горячее извлечение фильтруют в мерную колбу вместимостью 100 мл через бумажный фильтр, избегая попадания частиц сырья на фильтр. В колбу с сырьем повторно прибавляют 25 мл воды и кипятят в течение 20 мин. Горячее извлечение вместе с сырьем переносят на тот же фильтр и остаток на фильтре дважды промывают горячей водой порциями по 10 мл. К фильтрату прибавляют 3 мл раствора свинца (II) ацетата основного, перемешивают, охлаждают и доводят водой до объема 100,0 мл. Колбу помещают в водяную баню и выдерживают до полной коагуляции осадка. Горячую жидкость полностью отфильтровывают в колбу через бумажный фильтр, прикрывая воронку часовым стеклом. Охлаждают, к фильтрату прибавляют 1 мл кислоты серной, колбу взвешивают с точностью до 0,01 г и кипятят с обратным холодильником в течение 1,5 ч, поддерживая равномерное и слабое кипение. Охлаждают до комнатной температуры, взвешивают, доводят массу колбы до первоначальной водой, и полностью отфильтровывают через бумажный фильтр в колбу вместимостью 250 мл. К фильтрату прибавляют 0,1 г порошка цинка и встряхивают в течение 5 мин.

Информация о работе Лекарственное растительное сырье, содержащее фенолгликозиды