Основные формы бактерий

Автор работы: Пользователь скрыл имя, 10 Декабря 2014 в 01:59, реферат

Краткое описание

Первой общей биологической классификацией была созданная в XVIII веке система шведского ученого К. Линнея, основанная на морфологических признаках и включавшая животный и растительный мир. С развитием науки в классификации стали учитывать не только морфологические, но и физиологические, биохимические и генетические особенности микроорганизмов. В настоящее время невозможно говорить об единой классификации всех живых организмов: сохраняя единые принципы, классификации макро- и микроорганизмов имеют свои особенности.

Вложенные файлы: 1 файл

микра.doc

— 287.00 Кб (Скачать файл)

Правила работы с имерсионной системой:

1. Поднять конденсор Аббеа к  уровню предметного столика, полностью  открыть ирис-диафрагму.

2. Пользуясь обьективом 8, с помощью плоского зеркала добиться максимального освещения поля зрения.

3. На предметном столике разместить  окрашенный мазок препарата, нанести  на него кедровое масло и  закрепить клеммами.

4. Возвращая револьвер, установить  над препаратом имерсионный обьектив 90, под контролем зрения опустить его в каплю кедрового масла.

5. Глядя в окуляр левым глазом (не закрывая правого), сначала  с помощью макровинта найти  контуры изображения, потом, пользуясь  микровинтом, достичь максимальной  четкости, ичить и зарисовать  препарат.

6. По окончании работы поднять  тубус, снять предметное стекло, осторожно вытереть имерсионный  обьектив от кедрового масла, повернуть его в сторону, опустить  тубус.

 

Освещение за методом Келлера. Наилучшие результаты микроскопии при субьективних исследованиях и микрофотографировании можно получить лишь при условии четкого центрирования всех оптических частей микроскопа, включая и систему освещения. Этого достигают при использовании метода Келлера.

1. Заводскойосветитель с "точечным" источником света устанавливают на растоянии 25-30 см от микроскопа так, чтобы плоское зеркало отбрасывало световое пятно диаметром около 8 мм на закрытую диафрагму конденсора. За этим процессом следят с помощью зеркальца, размещенного на правой ножке микроскопа.

2. На предметный столик кладут препарат, пользуясь сухими обєктивами (8х, 40х), наводят четкое изображение, снимают окуляр и на верхний конец тубуса кладут матовое стеклышко. На нем видно изображение обьекта в центре светового пятна. При необходимости установку корегируют. Открывают к оптимальному диаметру отверстие диафрагмы конденсора.

3. Устанавливают необходимый обьектив  и окуляр (лучше 10х) и приступают  к изучению или фотографированию  исследуемого обєкту.

Мазки препаратов следует изготовлять на предметных стеклах  толщиной не более 1,1-1,4 мм

 

Темнопольная  микроскопия отличается от обычной имерсионной световой способом освещения препарата. В обычном микроскопе обьект исследуют при свете, который проходит, в темнопольном * при боковом освещении. Для микроскопии в темном поле используют вместо конденсора Аббе специальный конденсор (кардиоид-конденсор) параболоида, в котором боковая поверхность зеркальная, а центральная часть нижней линзы затемнена, в результате чего образуется темное поле зрения. Яркие боковые лучи, отражаясь от зеркальной поверхности, фокусируются в плоскости обьекта, но в глаза микроскописта не попадают. В обьектив проникают лишь те лучи, которые оттражаются  частичками препарата благодаря преломлению или дифракции. Следовательно, на темном поле зрения микробные клетки и другие мелкие частицы выглядят очень яркими. Картина напоминает мигающие звезды на темном небе.

Темнопольный микроскоп дает возможность рассматривать обьекты размером 0,02-0,04 мкм, то есть значительно меньше, чем под обычным световым микроскопом. Потому темнопольный микроскоп часто называют ультрамикроскопом. Микроскопию в темном поле зрения используют для исследования подвижности бактерий, выявления возбудителей сифилиса, лептоспироза, возвратного тифа. Но при этом нельзя хорошо изучить внутреннюю структуру микроорганизмов. Для этой цели предложенны видоизмененные методы оптической микроскопии: фазово-контрастная, аноптральна и люминесцентная.

Фазовоконтрастна микроскопия * способ микроскопического исследования прозрачных, не поглощающих света обьектов, который базируется на усилении контраста изображения. Он заключается в том, что живые клетки (бактерии), слабо поглощая свет, все же способны изменять фазу проникающих лучей. В разных участках клетки толщина, плотность, а, следовательно, и показатели преломления света будут неодинаковы. Эту разницу в фазах ни орган зрения, ни фотопленка не замечают. Но их можно сделать видимыми с помощью специального фазовоконтрастного устройства. Он включает у себя конденсор с набором кольцевых диафрагм, которые обеспечивают освещение препарата полным конусом света, и фазовоконтрастные обьективы. Они отличаются от обычных обьективов тем, что в их главном фокусе располагается полупрозрачная фазовая пластинка в виде кольца. Именно она вызывает сдвиг фазы света, который  проходит через нее. Это позволяет сделать неокрашенные препараты четко видимыми.

При работе из фазовоконтрастным микроскопом клетки могут выглядеть темными (позитивный фазовый контраст) или светлыми (негативный контраст) в сравнении с окружающим фоном. Этот вид микроскопии не увеличивает разрешающей способности, но позволяет обнаружить новые детали внутренней структуры живых бактерий, стадии их развития, изменения под воздействием антибиотиков и других химиопрепаратов. Он имеет и некоторые недостатки: слабая контрастность изображений, наличие сияющих ореолов вокруг исследуемых обєктів. Значительные преимущества перед фазовоконтрастним микроскопом имеет аноптральний микроскоп.

Люминесцентная микроскопия в последнее время широко используется в микробиологических исследованиях. Этот метод позволяет наблюдать первичную или вторичную люминесценцию (свечение) микроорганизмов, клеток, тканей и отдельных их структур. Изображение в люминесцентном микроскопе возникает из-за свечения самого препарата, которое возникает при освещении его коротковолновой частью спектра. Метод основан на использовании явления флуоресценции. Так как большинство болезнетворных микробов не имеют первичной (собственной) люминесценции, их сначала обрабатывают слабыми растворами специальных красителей (флуорохромов), которые связываются определенными структурами живых бактерий, не нанося им вреда. Чаще всего применяют такие флуорохромы: акридиновый оранжевый, аурамин, корифосфин, изотиоцианат флуоресцеина, трипафлавин и др.

Лучи света от сильного источника, например, ртутной лампы избыточного давления, пропускают через сине-фиолетовый светофильтр. Под действием такого облучения окрашенные флуорохромом бактерии начинают светиться красным, зеленым, желтым или другим цветом. Так, при окраске дифтерийных палочек корифосфином они приобретают желто-зеленое свечение, а при обработке аурамин-родамином возбудитель туберкулеза светится золотисто-оранжевым цветом.

Метод люминесцентной микроскопии намного более чувствительный сравнительно с другими микроскопическими исследованиями. Он позволяет обнаружить такое малое количество возбудителя, которое другими методами не находят. По характеру люминесценции можно дифференцировать отдельные химические вещества, которые входят в состав микробных клеток. Использование люминесцентного микроскопа имеет ряд преимуществ: цветное изображение, высокая контрастность, возможность исследовать как живые, так и убитые микроорганизмы.

Люминесцентную микроскопию широко применяют для выявления антигенов и антител (метод иммунофлуоресценции). С ее помощью можно увидеть микробы, которые содержат определенные антигены. Для их выявления необходимо иметь специфические люминесцентные сыворотки, которые вызывают флуоресценцию именно данного антигена. Этот метод успешно используют для экспресс-диагностики многих бактериальных и вирусных заболеваний.

Кроме люминесцентного устройства ОІ-17 и специальных осветлителей ОІ-18, ОІ-28, ОСЛ-1, бактериологические лаборатории оснащенные люминесцентными микроскопами МЛ-2, МЛД-1 и др. Модель МЛ-2 имеет большой комплект оптики, фильтров, фотонасадку, дает возможность проводить одновременно комбинированные наблюдения: люминесцентное при освещении препарата сверху и фазовоконтрастное в проходящому свете.

Электронная микроскопия. Для изучения строения микроорганизмов на субклеточном и молекулярном уровнях, а также для исследования структуры и архитектоники вирусов используют электронный микроскоп.   Это высоковольтный вакуумный прибор, в котором увеличенное изображение получают с помощью потока электронов. Он обладает высокой разрешающей способностью  и может давать увеличение от 20 тыс. до 5 млн. раз. По принципу действия различают  трансмиссионные, сканирующие (растровые) и комбинированные электронные микроскопы.

Принципиальная схема трансмиссионного электронного микроскопа мало чем отличается от обычного оптического. Возможности светового микроскопа ограничены не качествами линз, а большой длиной световых волн (0,29-0,8 мкм). Малая длина волны электронов (0,0002 мкм и даже меньше) позволяет значительно увеличить разрешающую способность электронного микроскопа. Вместо света в нем используют поток электронов, источником которых является вольфрамовая нить, которая нагревается электрическим током (электронная пушка). Роль линз оптического микроскопа выполняет круговое электромагнитное поле. Пучки электронов, проходят через исследуемый обьект, отклоняются под разными углами в зависимости от неодинаковой толщины и плотности разных участков препарата и попадают в обьективную линзу. В ней появляется первое полезное увеличение обьекта.

После линзы обьектива  электроны попадают в промежуточную линзу, которая служит для плавного увеличения изображения. Проекционная линза создает конечное увеличенное изображение обьекта, которое направляется на флюоресцирующий экран. Благодаря взаимодействию быстрых электронов с люминофором экрана возникает видимое изображение обьектов. После наведения четкости проводят фотографирование.

Электронная микроскопия требует специальной подготовки обьектов исследования. Необходима специальная фиксация тканей или бактерий, их тщательное обезвоживание, заливка в эпоксидные смолы, изготовление ультратонких срезов. Для повышения четкости изображения используют методы позитивного и негативного контрастирования и оттенения.

Широко также используют ультратонкие срезы клеток, бактерий и вирусов, что дает возможность исследовать их структуру на субклеточном и молекулярном уровнях.

Современная украинская и зарубежная промышленность выпускает много моделей электронных микроскопов, которые имеют огромные возможности для изучения микроскопического мира.

Методы электронной микроскопии привели к большим успехам в развитии таких наук как цитология, бактериология, генетика и, особенно, вирусология. Успешно развивается иммунная электронная микроскопия, которая дает возможность определить родовую принадлежность вирусов, что используется для экспресс-диагностики многих вирусных инфекций.

 

 


Информация о работе Основные формы бактерий