Автор работы: Пользователь скрыл имя, 17 Декабря 2013 в 14:28, реферат
Одной из важнейших фундаментальных проблем биофизики является расшифровка механизмов первичных процессов действия света на разные биологические системы. Свет является одним из ключевых факторов среды обитания большинства организмов. Рецепция света и трансформация его энергии лежит в основе зрения, фотосинтеза и ряда фоторегуляторных процессов у растений, в инициации которых участвуют специализированные фоторецепторы, например, родопсин, хлорофилл, фитохром, фототропин, криптохром. Поглощая свет определенного спектрального диапазона, фоторецепторы вступают в фотохимические реакции с образованием первичных фотопродуктов. Последние участвуют в биохимических процессах клеточной регуляции, что приводит к развитию конечных фотобиологических эффектов.
Ростовский
Государственный Медицинский
Фотомедицина
Выполнил
Студент 1 курса ЛПФ
Петеводян Саркис Борисович
Ростов-на-Дону
2013г.
Биофизика фотобиологических процессов
Одной из важнейших фундаментальных проблем биофизики является расшифровка механизмов первичных процессов действия света на разные биологические системы. Свет является одним из ключевых факторов среды обитания большинства организмов. Рецепция света и трансформация его энергии лежит в основе зрения, фотосинтеза и ряда фоторегуляторных процессов у растений, в инициации которых участвуют специализированные фоторецепторы, например, родопсин, хлорофилл, фитохром, фототропин, криптохром. Поглощая свет определенного спектрального диапазона, фоторецепторы вступают в фотохимические реакции с образованием первичных фотопродуктов. Последние участвуют в биохимических процессах клеточной регуляции, что приводит к развитию конечных фотобиологических эффектов. В то же время свет индуцирует протекание в клеточных структурах различных деструктивных фотохимических реакций, природа и эффективность которых зависит от длины волны и интенсивности излучения, наличия соответствующих фотоактивных хромофоров и их внутриклеточной локализации, а также способности клеток к фотозащите и репарации фотоповреждений. Наиболее эффективно деструктивные реакции индуцируются высокоэнергетическим ультрафиолетовым (УФ) излучением (‹290 нм). Экологическими компонентами оптического излучения солнца яаляются средневолновый УФ (СУФ, 290—320 нм), длинноволновый УФ (ДУФ, 320—400 нм) и видимый свет (400—700 нм). Уменьшение концентрации стратосферного озона ведет к повышению интенсивности СУФ, который за счет прямого поглощения нуклеиновыми кислотами и белками вызывает образование в них повреждений, обусловливающих цитотоксические, мутагенные и канцерогенные эффекты. ДУФ и видимый свет, которые макромолекулами непосредственно не поглощаются, могут индуцировать деструктивные реакции за счет фотосенсибилизации с участием эндогенных и экзогенных сенсибилизаторов (хромофоров), способных в фотовозбужденном состоянии реагировать с биосубстратами с образованием реакционноспособных радикалов или генерировать активные формы кислорода, вызывающие окислительный стресс.
Молекулярная фотобиология
Исследования в этой области
связаны с изучением
• какие потенциально
фотоактивные хромофоры (сенсибилизаторы)
могут вступать в фотохимические реакции
в клетке, не содержащей специализированные
фоторецепторные системы;
• какова природа первичных фотопродуктов,
ответственных за развитие конечного
фотобиологического эффекта;
• какое значение для протекания фотореакций
и проявления эффекта имеют внутриклеточная
локализация фотоактивного хромофора
и его молекулярное микроокружение;
• какие механизмы могут лежать в основе
фотоиндуцированной модификации цитотоксических
эффектов оптического излучения, которая
наблюдается при комбинированных воздействиях
света разной длины волны и интенсивности.
Исследования, проведенные на клетках дрожжей, позволили обнаружить, что низкоинтенсивный монохроматический свет в диапазоне 290—380 нм индуцирует два различных фотобиологических эффекта в зависимости от дозы облучения: фотозащиту от УФ-инактивации и фотостимуляцию размножения клеток. Оба эффекта основаны на фотомодуляции активности фермента, катализирующего синтез серотонина — метаболита, у которого были обнаружены ранее не известные функции — протектора ДНК от УФ-повреждений и регулятора клеточного деления. При более высоких интенсивностях и дозах ДУФ- излучение вызывает летальный эффект, в основе которого лежат фотодинамические реакции. Показано, что функцию эндогенного сенсибилизатора выполняет локализованный в ядре клетки НАДН. Установлена способность НАДН фотогенерировать супероксидный анион-радикал кислорода с последующим образованием перекиси водорода и гидроксильного радикала, который непосредственно участвует в формировании одноцепочечных разрывов ДНК. Кратковременное воздействие видимого света в малых дозах (максимум эффективности в красной области спектра при 680 нм) индуцирует защитный эффект в условиях инактивирующего облучения клеток СУФ и ДУФ. Установлено цитотоксическое действие видимого света, опосредованное эндогенным сенсибилизатором протопорфирином. В условиях индуцированного накопления в митохондриях клетки высокого уровня сенсибилизатора и последующей его релокализации в плазматическую мембрану и ядро наблюдается многократное увеличение летального эффекта вследствие взаимодействия деструктивных процессов, протекающих в этих структурах.
В качестве первоочередной
задачи при изучении молекулярного
механизма обнаруженного
Наноразмерные синтетические энергопреобразующие системы
Базовые принципы высокоэффективного
преобразования световой энергии при
фотосинтезе легли в основу создания
синтетических
Перспективы (как в фундаментальном, так и в прикладном аспекте) связаны с возможностью создания гибридных наноразмерных биоэнергетических и биосенсорных устройств. Фотосинтетический реакционный центр является природным наноструктурным образованием. Именно специфика протекания фотофизических и фотохимических процессов в наноразмерных структурах объясняет уникальные энергопреобразующие свойства фотосинтетических РЦ. Гибридные устройства типа: РЦ — нанотрубка или молекулярный провод — электрод — внешняя электрическая цепь могут стать прообразом биоэлектрических генераторов энергии.
Блоджетт, атомно-силовая и туннельная микроскопия, электрохимический анализатор).
Кислород-выделяющий комплекс хлоропластов (КВК)
Фотохимическое разделение
зарядов в РЦ фотосистем индуцирует
транспорт электронов в ЭТЦ фотосинтеза.
У высших растений и водорослей донором
электронов является вода. Побочный продукт
окисления воды, кислород, выбрасывается
в атмосферу, его накопление в
атмосфере привело к ее радикальной
трансформации и послужило
В проводимых в настоящее время исследованиях ФС II широко используются новейшие методы, применяемые в передовых областях биофизики, биохимии, молекулярной биологии, нанотехнологии для изучения каталитических центров металлоферментов, механизмов внутри- и межмолекулярного переноса электрона, структурной организации и функционирования наноструктур. К ним можно отнести различные методы регистрации флуоресценции, рентгеноструктурный анализ, точечный мутагенез, компьютерное моделирование структуры, рентгеновскую спектроскопию, ЭПР, инфракрасную спектроскопию с Фурье разложением и т.д. Исследования КВК, проводимые на кафедре биофизики, направлены на выяснение структурной организации КВК с использованием разработанного метода замещения катионов марганца на катионы железа, а также роли кофакторов КВК — катионов кальция и анионов хлора — в окислении воды.
Проблемы регуляции
первичных процессов
Фотосинтетический аппарат
имеет сложную многоуровневую систему
регуляции, которая должна обеспечивать
эффективное использование
Механизмы «быстрой» регуляции, ответственные за динамические изменения в функционировании отдельных участков фотосинтетической цепи, с синтезом белка не связаны. Они основаны на изменениях констант взаимодействия переносчиков, например, вследствие изменения их конформации, и направлены на недопущение перевосстановленности ЭТЦ при высоких освещенностях. Из результатов исследований последних лет, проводимых на кафедре биофизики, можно предполагать, что следствием наличия гибкой системы регуляции является защита от окислительных повреждений, а целью быстрой регуляции электронтранспортных процессов фотосинтеза — создание оптимального состояния ЭТЦ, когда нет избытка или недостатка электронов на определенных ее участках, что позволяет защитить фотосинтетические мембраны от фотодеструкции.
Наличие большого числа акцепторов
электронов открывает дополнительные
возможности для регуляции
Существует несколько механизмов, защищающих фотосинтетические мембраны от фотоповреждения. Важную роль играет нефотохимическое тушение возбужденных состояний хлорофилла, этот механизм связан с образованием трансмембранного ΔрН, а также работой виолоксантинового цикла. Вся не использованная в фотосинтезе энергия поглощенных квантов света рассеивается в виде тепла или излучается в виде флуоресценции. Увеличение рассеивания энергии в виде тепла уменьшает количество актов разделения зарядов в РЦ и, соответственно, приводит к уменьшению потока электронов в ЭТЦ. Подавляющая часть флуоресценции, наблюдаемой при изучении листьев высших растений или суспензий зеленых водорослей, генерируется в ФС II. В настоящее время параметры флуоресценции широко используются в фундаментальных и прикладных исследованиях как показатель состояния и эффективности функционирования фотосинтетического аппарата. Основная идея состоит в том, что уменьшение эффективности запасания света в фотосинтезе приводит к увеличению интенсивности флуоресценции. Изменения состояния фотосинтетического аппарата сопровождаются изменением вероятности тушения энергии электронного возбуждения молекул хлорофилла, что и проявляется в изменении квантового выхода и времени затухания флуоресценции.
Фотоиндуцированное выделение водорода
Перспективным направлением исследований является фотоиндуцированное выделение водорода эукариотическими микроводорослями — еще один механизм регуляции первичных процессов фотосинтеза. Этот удивительный процесс был открыт более 60 лет назад и активно используется в биотехнологических целях, однако в понимании молекулярных механизмов и принципов регуляции процесса есть еще много белых пятен. Водород выделяется гидрогеназой — ферментом, восстанавливающим протоны до молекулярного водорода. Непосредственными донорами электронов в гидрогеназной реакции являются ферредоксин или НАДФ. Таким образом, фотоиндуцированное выделение водорода тесно связано с работой фотосинтетической ЭТЦ, но непременным условием этого процесса является отсутствие кислорода, который ингибирует активность фермента даже при очень низких концентрациях.
Как биотехнологический прием для разделения во времени процессов фотосинтетического выделения О2 и светозависимого выделения Н2 можно использовать серное голодание культуры водорослей. Изучение влияния серного голодания на клетки Chlamydomonas reinhardtii в аэробных условиях (когда гидрогеназа неактивна) показало, что при недостатке серы происходит инактивация катализируемого ФС II выделения О2 . В замкнутом культиваторе культура микроводоросли на свету в отсутствие серы в среде проходит несколько последовательных стадий. Сначала идет активное выделение O2, затем активность ЭТЦ фотосинтеза снижается, и процессы дыхания начинают преобладать над процессами фотосинтеза. Когда скорость фотосинтетического образования O2 становится ниже скорости дыхания, культура переходит в анаэробные условия, и через некоторое время начинается выделение H2.
О том, что происходит с
фотосинтетическим аппаратом
Информация о работе Фотомедицина. Биофизика фотобиологических процессов