Автор работы: Пользователь скрыл имя, 19 Июня 2014 в 17:09, шпаргалка
Работа содержит ответы на вопросы к зачету по "Биологии".
В связи с такой спецификой энергоснабжения нервных клеток любое нарушение снабжения мозга кислородом или глюкозой неминуемо ведет к снижению его функциональной активности, что у спортсменов может проявляться в форме головокружения или обморочного состояния.
3.3 Биохимические сдвиги в миокарде
Во время мышечной деятельности происходит усиление и учащение сердечных сокращений, что требует большего количества энергии по сравнению с состоянием покоя. Однако энергообеспечение сердечной мышцы осуществляется главным образом за счет аэробного ресинтеза АТФ. Анаэробные пути ресинтеза АТФ включаются лишь при очень интенсивной работе (ЧСС более 200 уд./мин).
Большие возможности аэробного энергообеспечения в миокарде обусловлены особенностью строения этой мышцы. В отличие от скелетных мышц в сердечной имеется более развитая, густая сеть капилляров, что позволяет извлекать из протекающей крови больше кислорода и субстратов окисления. Кроме того, в клетках миокарда имеется больше митохондрий, содержащих ферменты тканевого дыхания. В качестве источников энергии миокард использует различные вещества, доставляемые кровью: глюкозу, жирные кислоты, кетоновые тела, глицерин. Собственные запасы гликогена практически не используются; они необходимы для энергообеспечения миокарда при истощающих нагрузках.
Во время интенсивной работы, сопровождающейся увеличением концентрации лактата в крови, миокард извлекает из крови лактат и окисляет его до углекислого газа и воды. При окислении одной молекулы молочной кислоты синтезируется до 18 молекул АТФ. Способность миокарда окислять лактат имеет большое биологическое значение. Использование лактата в качестве источника энергии позволяет дольше поддерживать в крови необходимую концентрацию глюкозы, что очень существенно для биоэнергетики нервных клеток, для которых глюкоза является почти единственным субстратом окисления. Окисление лактата в сердечной мышце также способствует нормализации кислотно-щелочного баланса, так как при этом в крови снижается концентрация этой кислоты.
3.4 Биохимические сдвиги в печени
При мышечной деятельности активируются функции печени, направленные преимущественно на улучшение обеспечения работающих мышц внемышечными источниками энергии, переносимыми кровью. Ниже описаны наиболее важные биохимические процессы, протекающие в печени во время работы.
1. Под воздействием адреналина
повышается скорость глюкогенез
2. Во время выполнения
3. Еще один биохимический
4. При физической работе
Аммиак является клеточным ядом, его обезвреживание происходит в печени, где он превращается в мочевину. Синтез мочевины требует значительного количества энергии.
При истощающих нагрузках, несоответствующих функциональному состоянию организма, печень может не справляться с обезвреживанием аммиака, в этом случае возникает интоксикация организма этим ядом, ведущая к снижению работоспособности.
3.5 Биохимические сдвиги в крови
Изменения химического состава крови является отражением тех биохимических сдвигов, которые возникают при мышечной деятельности в различных внутренних органах, скелетных мышцах и миокарде. Поэтому на основании анализа химического состава крови можно оценить биохимические процессы, протекающие во время работы. Это имеет большое практическое значение, так как из всех тканей организма кровь наиболее доступна для исследования.
Биохимические сдвиги, наблюдаемые в крови, в значительной мере зависят от характера работы, и поэтому их анализ следует проводить с учетом мощности и продолжительности выполненных нагрузок.
При выполнении мышечной работы в крови чаще всего обнаруживаются следующие изменения:
1. Повышение концентрации белков
2. Изменение концентрации
3. Повышение концентрации лактата
В покое, до работы содержание лактата в крови равняется 1-2 ммоль/л (0,1-0,2 г/л). После работы «до отказа» в зоне субмаксимальной мощности у спортсменов средней квалификации концентрация лактата в крови увеличивается до 8-10 ммоль/л, у высокотренированных этот рост может достигать 18-20 ммоль/л и выше. В литературе описаны случаи повышения лактата в крови у очень хорошо подготовленных спортсменов до 30-32 ммоль/л.
При проведении анализа крови на содержание лактата необходимо учитывать, что увеличение его концентрации в крови происходит не сразу, а через несколько минут после окончания работы. Поэтому забор крови следует делать примерно через 5 мин после завершения нагрузки. При взятии крови в более поздние сроки концентрация лактата окажется заниженной, так как часть его будет извлечена из кровяного русла клетками миокарда и печени.
4. Водородный показатель (рН). Образующийся при интенсивной работе лактат является сильной кислотой и его поступление в кровяное русло должно вести к повышению кислотности крови. Однако первые порции лактата, диффундирующие из мышц в кровяное русло, нейтрализуются буферными системами крови. В дальнейшем, по мере исчерпания емкости буферных систем, наблюдается повышение кислотности крови, возникает так называемый некомпенсированный ацидоз. В покое значение рН венозной крови равно 7,35-7,36. При мышечной работе, вследствие накопления в крови лактата, величина рН уменьшается. При выполнении физических упражнений субмаксимальной мощности рН снижается у спортсменов средней квалификации до 7,1-7,2, а у спортсменов мирового класса снижение водородного показателя может быть до 6,8.
5. Повышение концентрации
6. Мочевина. При кратковременной работе концентрация мочевины в крови увеличивается незначительно, а при длительной физической работе уровень мочевины в крови может возрасти в 4-5 раз. Причиной увеличения содержания мочевины в крови является усиление катаболизма белков под воздействием физических нагрузок, особенно силового характера. Распад белков, в свою очередь, ведет к накоплению свободных аминокислот, при распаде которых образуется в большом количестве аммиак. В печени большая часть образовавшегося аммиака превращается в мочевину.
3.6 Биохимические сдвиги в моче
Выполнение физических нагрузок приводит также к значительным сдвигам в химическом составе мочи и существенно влияет на ее физико-химические свойства.
После завершения мышечной работы наиболее характерным является появление в моче химических веществ, которые в покое практически отсутствуют. Эти соединения часто называют патологическими компонентами, так как они появляются в моче не только после физических нагрузок, но и при ряде заболеваний. У спортсменов после выполнения тренировочных или соревновательных нагрузок в моче обнаруживаются следующие патологические компоненты:
1. Белок. У здорового человека, не занимающегося спортом, в сутки выделяется не более 100 мг белка. Поэтому в порциях мочи, взятых для анализа до тренировки, обычными методами белок не обнаруживается. После выполнения мышечной работы отмечается значительное выделение с мочой белка. Это явление носит названиепротеинурия. Особенно выраженная протеинурия наблюдается после чрезмерных нагрузок, не соответствующих функциональному состоянию спортсмена. Вероятными причинами протеинурии являются повреждение почечных мембран, возникающее под влиянием мышечных нагрузок, а также появление в крови во время физической работы продуктов деградации тканевых белков - различных полипептидов, легко проходящих через почечный фильтр из кровяного русла в состав мочи.
2. Глюкоза. В порциях мочи, полученных
до выполнения физической
3. Кетоновые тела. До работы кетоновые тела в моче не обнаруживаются.
После соревновательных или тренировочных
нагрузок с мочой могут выделяться в больших
количествах кетоновые тела - ацетоуксусная
и Р-оксимасляная кислоты, а также продукт
их распада - ацетон. Это явление называется кетонурией, или аце
4. Лактат. Появление молочной кислоты в моче обычно наблюдается после тренировок, включающих упражнения субмаксимальной мощности. Каждое такое упражнение приводит к резкому возрастанию концентрации лактата в крови и последующему его переходу из кровяного русла в мочу. Таким образом происходит аккумулирование молочной кислоты в моче. В связи с этим по выделению лактата с мочой можно судить об общем вкладе гликолитического пути ресинтеза АТФ в энергообеспечение всей работы, выполненной спортсменом за тренировку.
Наряду с влиянием на химический состав физические нагрузки приводят к изменению физико-химических свойств мочи. Наиболее существенные изменения следующие:
5. Плотность. Вследствие повышения роли внепочечных путей выделения воды из организма (через кожу с потом, через легкие с выдыхаемым воздухом) объем мочи (диурез) после тренировки или соревнования, как правило, уменьшается. Это, в свою очередь, сказывается на плотности. Данный показатель после работы чаще всего повышается. В среднем плотность мочи до нагрузок колеблется в пределах 1,010-1,025 г/мл. После тренировки этот показатель может быть равен 1,030-1,035 г/мл и даже еще выше. Одной из причин увеличения плотности мочи является, как отмечалось выше, увеличение внепочечных потерь воды, что приводит к возрастанию концентрации растворенных в моче веществ. Другой причиной повышения плотности мочи после физической работы может оказаться появление в моче веществ, отсутствующих в ней в состоянии покоя (белок, глюкоза, кетоновые тела, лактат и др.).