Автор работы: Пользователь скрыл имя, 21 Января 2014 в 11:39, реферат
Говоря о клеточном ядре, мы имеем в виду собственно ядра эукариотических
клеток. Их ядра построены сложным образом и довольно резко отличаются от
“ядерных” образований, нуклеоидов, прокариотических организмов. У
последних в состав нуклеоидов (ядроподобных структур) входит одиночная
кольцевая молекула ДНК, практически лишенная белков. Иногда такую
молекулу ДНК бактериальных клеток называют бактериальной хромосомой, или
генофором (носителем генов).
1.Вступление…………………………………………………………………………………………..1-2 стр.
2.Ядерная оболочка
Строение ядерной оболочки
Ядерный матрикс………………………………………………………………………………..2-8 стр.
3.Хроматин………………………………………………………………………………………..….8-15 стр.
4.Хромосомы……………………………………………………………………………………...15-18 стр.
5.Ядрышко…………………………………………………………………………………………..18-30 стр.
6.Литература……………………………………………………………………………………….30-31 стр.
Объект РНК ДНК Белок РНК/ДНК
Печень крысы 11,0 8,0 78,0 1,4
Регенерирующая печень (6 ч) 7,6 4,6 87,8 1,7
Регенерирующая печень (18 ч) 15,5 5,4 79,1 2,9
Печень морской свинки 4,1 9,5
Стебель гороха (4 дня) 15,11 10,6 74,0 1,5
Проростки гороха (36 ч) 16,7 6,4 76,9 2,6
Так как основную массу цитоплазматической РНК составляет рибосомная РНК,
то можно сказать, что ядрышковая
РНК принадлежит к этому
Подтверждением представлений того, что именно ядрышко является местом
синтеза рРНК и образования рибосом, послужило то, что из ядрышковых
препаратов были выделены РНП-частицы, которые как по составу РНК (по
седиментационным свойствам), так и по размеру можно охарактиризовать как
рибосомы или их предшественники с различными коэффициентами
седиментации.
ДНК ядрышек
Биохимическими исследованиями обнаружено в выделенных ядрышках
определенное количество ДНК, которую можно отождествить с
околоядрышковым хроматином или с ядрышковыми организаторами хромосом.
Содержание ДНК в выделенных ядрышках - 5-12% от сухого веса и 6-17% от
всей ДНК ядра.
ДНК ядрышкового организатора - это та самая ДНК, на которой происходит
синтез ядрышковой, т.е. рибосомной, РНК.
Таким образом из биохимических работ появились представления о том, что
в ядрышке на ДНК локализованы многочисленные одинаковые гены для синтеза
рРНК. Синтез рРНК идет путем образования огромного предшественника и
дальнейшего его превращения (созревания) в более короткие молекулы РНК
для большой и малой субъедениц рибосом.
Изучая ядрышки ооцитов
явлением - сверхчисленностью ядрышек. У X. laevis во время роста ооцита
появляется до 1000 мелких ядрышек, не связанных с хромосомами. Именно
эти ядрышки выделил О.Миллер. вместе с этим на ядро ооцита увеличивается
количество рДНК. Это явление получило название амплификации. Оно
заключается в том, что происходит сверхрепликация зоны ядрышкового
организатора, многочисленные копии отходят от хромосом и становятся
дополнительно работающими ядрышками. Такой процесс необходим для
накопления огромного (1012) количества рибосом на яйцевую клетку, что
обеспечит в будущем развитие эмбриона на ранних стадиях даже при
отсутствии синтеза новых рибосом. Сверхчисленные ядрышки после
созревания яйцевой клетки исчезают.
Ультраструктура ядрышек
При изучении большого числа различных клеток животных и растений
отмечена волокнистая или
или менее плотную диффузную массу. Были предложены названия для этих
частей: волокнистая часть - нуклеонема и диффузная, гомогенная часть -
аморфное вещество, или аморфная часть. Сделанные почти одновременно с
этим электронно-микроскопичес-
волокнисто-нитчатое строение ядрышек.
Однако такое нитчатое строение ядрышка не всегда четко выражено. У
некоторых клеток отдельные нити нуклеонем сливаются, и ядрышки могут
быть совершенно однородными.
При более пристальном изучении ядрышка можно заметить, что основные
структурные компоненты ядрышка - плотные гранулы диаметром около 15 нм и
тонкие фибриллы толщиной 4-8 нм. Во многих случаях (ооциты рыб и
амфибий, меристематические клетки растений) фибриллярный компонент
собран в плотную центральную зону (сердцевина), лишенную гранул, а
гранулы занимают переферическую зону ядрышка. В ряде случаев (например,
клетки корешков растений) в этой гранулярной зоне не наблюдается никакой
дополнительной структуризации.
Было найдено, что аморфные участки ядрышек неоднородны. В их структуре
выявляются малоокрашенные зоны - фибриллярные центры - и окружающие их
более темные участки, тоже имеющие фибриллярное строение.
Кроме этих двух компонентов ядрышек в последнее время большое внимание
уделялось строению околоядрышкового хроматина. Этот хроматин и
внутриядрышковая сеть ДНК являются единой системой и представляют собой
интегральный компонент
Гранулы и фибриллярная часть состоят из рибонуклеопротеидов.
Показано, что именно светлые фибриллярные центры содержат рДНК.
Судьба ядрышка при делении клеток
Известно, что ядрышко исчезает в профазе и появляется вновь в средней
телофазе.
По мере затухания синтеза рРНК в средней профазе происходит разрыхление
ядрышка и выход готовых рибосом в кариоплазму, а затем и в цитоплазму.
При конденсации профазных хромосом фибриллярный компонент ядрышка и
часть гранул тесно ассоциируют с их поверхностью, образуя основу
матрикса митотических хромосом. Этот фибриллярно-гранулярный материал,
синтезированный до митоза, переносится хромосомами в дочерние клетки.
В ранней телофазе по мере деконденсации хромосом происходит
высвобождение компонентов матрикса. Его фибриллярная часть начинает
собираться в мелкие многочисленные ассоциаты - предъядрышки, которые
могут объединяться друг с другом. По мере возобновления синтеза РНК
предъядрышки претерпевают перестройку, что выражается в появлении в их
структуре гранул РНК, а затем в становлении дефинитивной формы нормально
функционирующего ядрышка.
Роль ядра.
Ядро осуществляет две группы общих функций: одну, связанную собственно с
хранением генетической информации, другую - с ее реализацией, с
обеспечением синтеза белка.
В первую группу входят процессы, связанные с поддержанием наследственной
информации в виде неизменной структуры ДНК. Эти процессы связаны с
наличием так называемых репарационных ферментов, ликвидирующих
спонтанные повреждения
радиационных повреждений), что сохраняет строение молекул ДНК
практически неизменным в ряду поколений клеток или организмов. Далее, в
ядре происходит воспроизведение или редупликация молекул ДНК, что дает
возможность двум клеткам получить совершенно одинаковые и в качественном
и в количественном смысле объемы генетической информации. В ядрах
происходят процессы изменения и рекомбинации генетического материала,
что наблюдается во время мейоза (кроссинговер). Наконец, ядра
непосредственно участвуют в процессах распределения молекул ДНК при
делении клеток.
Другой группой клеточных
является создание собственно аппарата белкового синтеза. Это не только
синтез, транскрипция на молекулах ДНК разных информационных РНК и
рибосомных РНК. В ядре эукариотов происходит также образование
субъедениц рибосом путем комплексирования синтезированных в ядрышке
рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме
и переносятся в ядро.
Таким образом, ядро представляет собой не только вместилище
генетического материала, но и место, где этот материал функционирует и
воспроизводится. Поэтому выпадение лил нарушение любой из перечисленных
выше функций губительно для клетки в целом. Так нарушение репарационных
процессов будет приводить к изменению первичной структуры ДНК и
автоматически к изменению структуры белков, что непременно скажется на
их специфической активности, которая может просто исчезнуть или
измениться так, что не будет обеспечивать клеточные функции, в
результате чего клетка погибает. Нарушения редупликации ДНК приведут к
остановке размножения клеток или к появлению клеток с неполноценным
набором генетической информации, что также губительно для клеток. К
такому же результату приведет нарушение процессов распределения
генетического материала (молекул ДНК) при делении клеток. Выпадение в
результате поражения ядра или в случае нарушений каких-либо регуляторных
процессов синтеза любой формы РНК автоматически приведет к остановке
синтеза белка в клетке или к грубым его нарушениям.
Значение ядра как хранилища генетического материала и его главная роль
в определении фенотипических признаков были установлены давно. Немецкий
биолог Хаммерлинг одним из первых продемонстрировал важнейшую роль ядра.
Он выбрал в качестве объекта своих экспериментов необычайно крупную
одноклеточную (или неклеточную) морскую водоросль Acetabularia.
Существует два близко родственных вида A. medierranea и A. crenulata,
различающихся только по форме “шляпки”.
В ряде экспериментов, в том числе таких, в которых “шляпку” отделяли от
нижней части “стебелька” (где находится ядро), Хаммерлинг показал, что
для нормального развития шляпки необходимо ядро. В дальнейших
экспериментах, в которых соединяли нижнюю часть, содержащую ядро одного
вида с лишенным ядра стебельком другого вида, у таких химер всегда
развивалась шляпка, типичная для того вида, которому принадлежит ядро.
При оценке этой модели ядерного контроля следует, однако, учитывать
примитивность организма, использованного в качестве объекта. Метод
пересадок был применен позднее в экспериментах, проведенных в 1952 г.
двумя американскими исследователями, Бриггсом и Кингом, с клетками
лягушки Rana pipenis. Эти авторы удаляли из неоплодотворенных яйцеклеток
ядра и заменяли их ядрами из клеток поздней бластулы, уже проявлявших
признаки дифференцировки. Во многих случаях из яиц реципиентов
развивались нормальные взрослые лягушки.
Литература:
Свенсон К., Уэбстер П. “Клетка”. М., Мир, 1980.
Де Робертис Э. Новинский В., Саэс Ф. “Биология Клетки”. М., Мир, 1971
Ченцов Ю.С., Поляков В.Ю. “Ультраструктура клеточного ядра”. М., Наука,
1974
Зегнбуш П. “Молекулярная и клеточная биология”. М., Мир, т.1,2, 1982