Шпаргалка по "Ботаника"

Автор работы: Пользователь скрыл имя, 13 Января 2014 в 13:54, шпаргалка

Краткое описание

Работа содержит ответы на вопросы по дисциплине "Ботаника".

Вложенные файлы: 1 файл

botan12.doc

— 238.00 Кб (Скачать файл)

1.Ботаника  как наука. Разделы ботаники.Ботаника-комплекс биологических наук, исследующих растения.1. Cистемакика растений, изучает: номенклатуру, классифика цию, устанавливает родственные связи между ними, происхождение их 2. Морфология – особенности и закономер

ности внешнего строения растений.3. Анатомия – внутренние структуры растений.4. Эмбриология – образование и развитие различных структур, обеспечивающих половое размножение растений. 5. Физиология – изучает процессы: фотосинтеза транспорта веществ, обмена, роста, развития и т.д.6. Геогра

фия -  формирование растительного покрова, распространение растительности.7. Экология – взаимоотyошение растений со средой и др.организмами8. Геоботаника (фитоценология) —сообщества растений в связи с почвой, продуктивность растительного .покрова, дает рекомендации по его улучше

нию.9. Палеоботаника — выясняет растительный облик нашей планеты в прежние эпохи па основе изучения найденных в земле окаменелостей

 

3. Клеточная  оболочка, ее видоизменения (лигнификация, суберинизация, кутинизация, минерализация, ослизнение).

Клеточная стенка, обладающая прочностью способна к росту, она  прозрачная и хорошо пропускает солнце, легко проникает вода. Основа оболочки составляют молекулы  целлюлозы собранные в сложные пучки – фибриллы, образующий каркас, погруженный в основу – матрикс, состоящий из гемицеллюлозы, пектинов, гликопротеидов. Первоначально число фибрилл невелико, но с возрастом они увеличивается и клетка теряет способность к растяжению.   В матриксе часто обнаруживается неуглеводный компонент – легнин. Одревеснение клеточной оболочки происходит в результате отложения лигнина, Лигнин повышает устойчивость тканей к разрушительному действию бактерий и грибов. Одревесневшие оболочки не теряют способности пропускать воду. Клетки с одревесневшими стенками могут оставаться живыми, но чаще становятся мертвыми.  Стенки некоторых клеток могут включать: воск, кутину, суберин. Функции: придает клетке форму; отделяет одну клетку от другой, является скелетом для каждой клетки и придает прочность всему растению, выполняет защитную функцию.  Опробковение вызывается особым жироподобным веществом — суберином. Опробковевшие оболочки становятся непроницаемыми для воды и газов, и содержимое клеток с опробковевшими оболочками отмирает. В местах ранения растения также образуются клетки с опробковевшими стенками, которые отделяют здоровые ткани от поврежденных.  Кутинизация заключается в выделении жироподобного вещества кутина. Обычно кутинизируются наружные стенки кожицы листьев и "травянистых стеблей. Это делает их менее проницаемыми для воды, уменьшает испарение у растений. Кутин образует на поверхности органа пленку, называемую кутикулой. . Минерализация клеточных оболочек — это отложение: кремнезема и солей кальция. Наиболее сильно инкрустируются оболочки клеток кожицы листьев и стеблей злаков, осок, хвощей. Листьями злаков и осок можно поранить руки.  Ослизнение оболочек – превращение целлюлозы и пектиновых веществ в слизи и камеди. Ослизнение хорошо наблюдается на семенах льна, находившихся в воде. Образование слизей способствует лучшему поглощению воды семенами и прикреплению их к почве.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.Строение и функции органелл клетки

Эндоплазматическая  сеть – трехмерная система вакуолей и канальцев, имеющая форму плоских мешочков или цистерн. является местом синтеза белка и образования липидов.

Аппарат Гольджи состоит из отдельных диктиосом и везикулами (пузырьков Гольджи). Диктиосомы – стопки плоских, не соприкасающихся друг с другом дисковидных цистерн, ограниченных мембранами, осуществляя синтез полисахарид. Пузырьки Гольджи отчленяются от краев диктиосомных пластинок или концов трубок и направляются в сторону плазмалеммы или вакуоли. транспортируют образовавшиеся полисахариды. Рибосомы В состав входят рибосомальная РНК и белки. Основной функцией рибосом является трансляция, то есть синтез белков.                                                                                                                                                                  Пластиды – органеллы, встречающиеся только в растительной клетке.  три   типа   пластид : 1. хлоропласты   –   самые   крупные,  зеленые ,  имеющие форму   двояковыпуклой   линзы ,  выполняющие   функцию   фотосинтеза . 2.Лейкопласты   –   бесцветные   пластиды, округлой   или   овальной   формы, выполняющие функции  синтеза   и   накопления   вторичного   крахмала ,  белков   и   липидов . 3. Хромопласты – разнообразной   формы;  желтого,  оранжевого,  красного  или   бурого   цвета ,  придающие   рекламную   окраску   органам   растений  Вакуоли –это производные ЭПС, ограниченные мембраной – тонопластом и заполненные водянистым содержимым – клеточным соком. В молодых растительных клетках вакуоли представляют сиситему канальцев и пузырьков (провакуоли), по мере роста клеток они увеличиваются и сливаются в одну большую вакуоль. Функции   вакуоли: обеспечивающее  тургор, водный   баланс   клетки  Накопительная синтетическая.  Митохондрии -  крошечные тельца нитевидной, зернистой или извилистой формы. Митохондрии считаются энергетическими станциями, вырабатывающими энергию и преобразующими ее в формы, нужные для синтеза и других процессов. Это дыхательные центры клетки. Микротела  Это тельца округлой формы, ограниченные элементарной мембраной. в них происходят реакции светового дыхания  поглощение О2 и выделение СО2 на свету Микротрубочки - они регулярно разрушаются и образуются вновь на определенных стадиях клеточного цикла.  Каждая микротрубочка состоит из субъединиц белка тубулина. У микротрубочек много функций. Одна из наиболее важных - это участие в формировании клеточной оболочки. Микрофиламенты - представляют собой длинные нити, состоящие из сократительного белка актина. Пучки микрофиламентов играют ведущую роль в токах цитоплазмы. Микрофиламенты вместе с микротрубочками образуют гибкую сеть, называемую цитоскелетом.                                                                                                                     Гиалоплазма  является  основным  веществом   цитоплазмы,  в   него  погружены   органоиды . функции : транспортную   коммуникационную  регуляторную 

 

 

2. Строение эукариотической клетки. Различия растительных и животных клеток  По форме различают 2 типа р. клеток: паренхимные (ширина и длина почти одинаковы) и позенхимные(длина в 5 и более больше ширины). Вегетативные (сомативные) окружена клеточной стенкой ( в основном из целлюлозы).Активное живое содержимое –протопласт (основа белок). Состоит: плазматическая мембрана, ядро, эндоплазматический ретикулум, рибосомы, комплекс Гольджи, хлоропласт, митохондрия, лизосомы, микротельца, микротрубочки, клеточная оболочка, центральная вакуоль.Различия растительной и живой клетки. 1.у Ж. – нет клеточной стенки, покрыта элементар. мембраной.    у Р. – клеточная стенка, поверх мембраны - в основе целлюлоза. Обмен в-в ч/з плазмодесмы.    У  грибов – кл.ст. из хитина (полисахарид)

2.  Ж. – гетеротропна(   ), не содержит пластид.   Р. аутотропна(  ), имеет пластиды. 3.в Ж.- центриоли, которые участвуют в образовании веретена деления.   в  Р - нет.   4.у Ж – запасное пит. вещество – гликоген (и у грибов)    У   Р – крахмал. 5. в Ж – нет центр. Вакуоли.   в Р – есть, содержит клеточный сок.

 

 

 

 

 

 

5.Ядро растительной  клетки, его строение и функции

Ядро – обязательная часть эукариотической клетки. Это место хранения и воспроизведения наследственной информации. Ядро также служит центром управления обменом веществ и почти всех процессов, происходящих в клетке. Чаще всего в клетках имеется лишь одно ядро, редко — два или несколько. Форма его чаще всего шаровидная или эллипсоидальная. В молодых, особенно меристематических, клетках оно занимает центральное положение, но позднее обычно смещается к оболочке, оттесняемое растущей вакуолью. Снаружи ядро покрыто двойной мембраной – ядерной оболочкой, пронизанной порами, на краях которых наружная мембрана переходит во внутреннюю. Внутреннее содержимое ядра – кариоплазма с погруженными в нее хроматином и ядрышками, и рибосомами. В процессе клеточного деления хроматин все более уплотняется и в конце концов собирается в хромосомы. По химическому составу ядро отличается высоким содержанием ДНК. Основная масса ДНК сосредоточена в хроматине — особых нуклеопротеидных нитях, рассеянных по всему ядру. В ядре заметно одно или несколько ядрышек. Подобно хроматину, ядрышки не имеют мембраны и свободно лежат в кариоплазме, состоя в основном из белка. Они содержат  РНК и имеют большую плотность, чем ядро. Основная функция ядрышек — синтез некоторых форм РНК и формирование предшественников рибосом

 

6.Общая характеристика  и классификация растительных тканей

Ткань – это группа клеток, которые имеют общее происхождение, выполняют одну или несколько функций и занимают свойственное им положение в органах растения. Ткани делят на простые и сложные. Простые - состоящие из клеток более или менее одинаковых по форме и функциям.  Сложные - из клеток, разных по форме и функциям, но тесно взаимосвязанных. Ткани делят на образовательные (меристемы) и постоянные. Образовательные - клетки сохраняют длительную способность к делению, обеспечивая рост растения и отдельных его органов. С учетом положения в теле растения их делят на верхушечные (находятся на апексах корня и побега), вставочные (свойственны побегу – стеблю и листьям) и боковые (представлены главным образом в осевых органах – в корне и стебле голосемянных и двудольных покрытосемянных).Постоянные - клетки которых утратили способность к делению и выполняют другие функции: защитной, запасающей, механической, проводящей и т.д. С учетом происхождения, преобладающей функции и положения в теле растения постоянные ткани, в свою очередь, делят на покровные, основные, проводящие.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.Основные  ткани растений, их характеристика  и функции.++

занимают наибольший объем. Снаружи они защищены покрывными тканями, а изнутри пронизаны  проводящими и механическими пучками. Образующие их клетки отличаются обычно паренхимным строением, из-за этого основные ткани нередко называют основной паренхимой. Основные ткани являются питающими тканями, хотя могут выполнять многие функции, начиная от ассимиляционной, кончая выделительной.  В зависимости от специализации, основную паренхиму делят на ассимиляционную, вентиляционную, всасывающую, запасающую и выделительную .Ассимиляционные (фотосинтези-рующие) ткани они имеют зеленую окраску – хлоренхима.  Ассим. ткань состоит из однородных тонкостенных клеток. Доступ углекислоты к клеткам облегчается тем, что в ней имеется развитая система межклетников, сообщающаяся с атмосферой. Наличие межклетников является характернейшей особенностью ассимиляционной ткани. Межклетники обеспечивают газообмен с окружающей средой. Хлоренхима располагается в местах, наиболее доступных свету: в надземной части растений непосредственно под кожицей листьев и стеблей. Нередко хлоренхима дифференцирована на столбчатую (палисадную) и губчатую ткань. Палисадная ткань содержит большое количество хлоропластов, здесь происходят световые реакции фотосинтеза. Губчатая ткань- протекает газообмен и темновая стадия фотосинтеза. Вентиляционная ткань (Аэренхима) во всех тканях имеются межклетники, образующие единую систему. Межклетники через проходные отверстия или устьица сообщаются с атмосферой. Однако газовый состав в межклетниках сильно отличается от газового состава атмосферы. Запасающие ткани Поглощенные растением синтезированные вещества могут откладываться в виде запасов: накопление воды, пластические вещества.сахар, инулин, аминокислоты, белки, крахмал.

 

8. Образовательные  ткани. Строение и месторасположение  клеток меристем, функции ткани  ++

Образовательная ткань (меристема)  дают начало всем постоянным тканям, обеспечивают рост органов. По   происхождению   они   могут   быть   первичными  ( производными   зародышевых   тканей   семени )  или вторичными ,  возникающими   позже .  По   топографии  ( расположению   в   теле   растений )  –   верхушечными ,  боковыми ,  вставочными . Апикальные, или верхушечные, меристемы возникают в зародыше семени, сохраняются в апексах — на кончике корня и на верхушке побега, обеспечивают рост органов в длину. Латеральные, или боковые, меристемы располагаются вдоль тела  растений ,  формируют   в   основном   проводящую   систему   ( проводящий   цилиндр )  и   вызывают   рост   органов   в   ширину К ним относятся: первичные — прокамбий, перицикл и вторичные — камбий, феллоген (пробковый камбий). Прокамбий   образует   первичные   проводящие   ткани : I  луб  ( флоэму )  и  I  древесину  ( ксилему ),  камбий   –  II  луб   и  II  древесину.  Пробковый камбий  ( феллоген)  формирует  вторичную   покровную   ткань   –   перидерму Интеркалярные, или вставочные, меристемы первичны.  Это   остатки   апикальных   меристем .  Обеспечивают   рост   черешков ,  тычиночных   нитей ,  междоузлий   и   т . д . Травматические, или раневые, меристемы вторичны, возникают в местах повреждения. Деление меристем стимулируют фитогормоны. Клетки меристемы паренхимные, живые, тонкостенные, плотно сомкнутые, с густой цитоплазмой, крупным ядром, большим количеством рибосом. Пластиды в форме пропластид и лейкопластов, вакуоли отсутствуют или очень мелкие. Те клетки меристемы, что находятся в состоянии постоянного деления, называются инициалями, а те, что образуются из них и подвергаются дифференцировке, это производные инициалей, или основная меристема.

 

 

 

 

 

 

 

 

 

 

 

9.Первичные  покровные ткани растений, строение  и функции устьичного аппарата.

А)В зависимости от происхождения покровных тканей, их строения и функций различают: эпидерму, перидерму, корку и эпиблему. Эпидерма, или кожица — первичная покровная ткань, покрывающая все части первичного тела растения. Образуется из протодермы — наружного слоя клеток верхушечных меристем. Эпидерма обычно однослойная, реже — многослойная комплексная ткань, защищает растение от температурных колебаний, механических и других повреждений, регулирует транспирацию, газообмен и внешнюю секрецию. В состав эпидермы, покрывающей надземные части, входят: базисные эпидермальные клетки с кутикулой, устьица и трихомы. Эпидерма, покрывающая подземные органы, лишена устьиц и трихом, не имеет толстой кутикулы. Базисные эпидермальные клетки— это живые клетки, вытянутые вдоль оси листа (у однодольных), или паренхимные (у двудольных).Оболочки эпидермальных клеток утолщены неравномерно: боковые стенки тонкие, нижние — более толстые, верхние, граничащие с внешней средой, утолщенные, кутинизированные или минерализированные, покрытые защитным слоем воска или кутина — кутикулой. Толщина и характер наслоения кутикулы различные у видов и зависят от экологических факторов. Контакт внутренних тканей органа с внешней средой устанавливается через устьичный аппарат, образованный замыкающими клетками и щелью (межклетником) между ними. В механизме работы устьичного аппарата, основным фактором  является изменение тургора (осмотического давления) внутри замыкающих клеток. Раскрыванию устьиц также способствует неравномерно утолщенные оболочки замыкающих клеток. Внутренние стенки более толстые, чем наружные. Поэтому при повышении давления в замыкающих клетках наружные стенки изгибаются сильнее и устьичная щель приоткрывается. Изменение тургорного давления в замыкающих клетках обусловлено изменением в них концентрации ионов калия. Ионы калия закачиваются в замыкающие клетки против градиента концентрации. На это требуется большое количество энергии, поэтому замыкающие клетки содержат многочисленные митохондрии. Углеводы, необходимые для активной деятельности митохондрий, синтезируются хлоропластами. При высокой концентрации калия вода всасывается в замыкающие клетки, их объем увеличивается и устьице открывается. Отток ионов калия и соответственно воды совершается пассивно. Резервуаром ионов калия служат побочные клетки. В движении устьиц особое значение имеет также и радиальная ориентация целлюлозных микрофибрилл в оболочках замыкающих клеток. Эти радиальные мицеллы позволяют замыкающим клеткам удлиняться и одновременно не дают им расширяться. В большинстве случаев устьица в значительно больших количествах расположены на нижней стороне листовых пластинок, чем на верхней. В этом случае устьица не подвержены прямому воздействию солнечных лучей и меньше нагреваются. В среднем на 1мм2 поверхности листа насчитывается 100-300 устьиц.

Информация о работе Шпаргалка по "Ботаника"