Автор работы: Пользователь скрыл имя, 25 Декабря 2013 в 19:11, курсовая работа
Для применения метода Якоби (и метода Зейделя) необходимо, чтобы диагональные компоненты матрицы А были больше суммы остальных компонент той же строки. Заданная система не обладает таким свойством, поэтому выполняю предварительные преобразования.
3. Метод Якоби (метод простых итераций)
Для применения метода Якоби (и метода Зейделя) необходимо, чтобы диагональные компоненты матрицы А были больше суммы остальных компонент той же строки. Заданная система не обладает таким свойством, поэтому выполняю предварительные преобразования.
Далее номер в скобках означает номер строки. Новую первую строку получаю сложением старой первой строки с другими строками, умноженными на специально подобранные коэффициенты. Записываю это в виде формулы:
(1)’ = (1) + 0,43*(2) - 0,18*(3) – 0,96*(4)
(2)’ = (2) + 0,28*(1) – 1,73*(3) + 0,12*(4)
(3)’ = (3) – 0,27*(1) - 0,75*(2) + 0,08*(4)
(4)’ = (4) + 0,04*(1) – 6,50*(2) + 8,04*(3)
Примечание: подбор коэффицентов выполнен на листе "Анализ".
Решаются системы уравнений, цель которых - обратить внедиагональные
элементы в нуль. Коэффиценты - это округлённые результаты решения
таких систем уравнений. Конечно, это не дело.
В результате получаю систему уравнений:
Для применения метода
Якоби систему уравнений нужно
преобразовать к виду:
X = B2 + A2*X Преобразую:
Далее делю каждую строку
на множитель левого столбца, то есть на
16, 7, 3, 70 соответственно. Тогда матрица
А2 имеет вид :
А вектор В2:
Задано вектор начального приближения, например
И выполнению итерационный цикл по формуле
Вычислению норму приращении
В качестве нормы применяю сумму модулей компонент.