Значение электроэнергетики в экономике России

Автор работы: Пользователь скрыл имя, 10 Ноября 2012 в 18:42, контрольная работа

Краткое описание

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства — уголь, торф, вода, ветер, солнце, атомная энергия и др.
Для приведения во вращение электрических генераторов используют первичные двигатели — паровые машины, двигатели внутреннего сгорания, газовые, тепло- и гидротурбины и др.

Содержание

Введение
1.Значение электроэнергетики в экономике России
2. Характеристика основных топливно – энергетических ресурсов России
3. Принципы развития и размещения электроэнергетического хозяйства
4. Единая энергетическая система России – значение и проблемы, ее связи с энергосистемами других стран
5. Экологические проблемы, связанные с развитием электроэнергетики и направления перспективного развития и размещения электростанций России
Заключение
Карта размещения электроэнергетики России
Список использованной литературы

Вложенные файлы: 1 файл

КОН - экономическая география - вариант 3.doc

— 198.50 Кб (Скачать файл)

 

Значительных недостатков  АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при  возможных форс-мажорных обстоятельствах:землетрясениях, ураганах, и т. п. - здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора.

Другие виды электростанций.

Несмотря на то, что  так называемые “нетрадиционные” виды электростанций занимают всего 0.07% в производстве электроэнергии в России развитие этого направления имеет большое значение, особенно учитывая размеры территории страны. Единственным представителем этого типа ЭС является Паужетская ГеоТЭС на Камчатке мощностью 11мвт.  Станция эксплуатируется с 1964 года и устарела как морально так и физически. В настоящее время в стадии разработки находится технический проект ветроэнергетической электростанции мощностью в 1 Мвт. на базе ветрового генератора мощностью 16 Квт, выпускаемого НПО “ВетроЭн”.

Единая энергетическая система России – значение и проблемы, ее связи с энергосистемами других стран

ЕЭС - единый объект управления, электростанции системы работают параллельно.

ЕЭС России - сложнейший автоматизированый  комплекс электрических станций  и сетей, объединенный общим режимом работы с единым центром диспетчерского управления (ДУ). Основные сети ЕЭС России напряжением от 330 до 1150 кВ объединяют в параллельную работу 65 региональных энергосистем от западной границы до Байкала. Структура ЕЭС позволяет функционировать и осуществлять управление на 3х уровнях: межрегиональном (ЦДУ в Москве), межобластном (объединенные диспетчерские управления) и областном (Местные ДУ). Такая иерархическая структура в сочетании с противоаварийной интеллектуальной автоматикой и новейшими компьютерными системами позволяет быстро локализовать аварию без значительного ущерба для ЕЭС и зачастую даже для местных потребителей.   Центральный диспетчерский пункт ЕЭС в Москве полностью контролирует и управляет работой всех станций, подключенных к нему.

Единая Энергосистема  распределена по 7 часовым поясам и  тем самым позволяет сглаживать пики нагрузки электросистемы за счет “перекачки” избыточной электроэнергии в другие районы, где ее недостает. Восточные регионы производят электроэнергии гораздо больше, чем потребляют сами. В центре же России наблюдается дефицит электроэнергии, который пока не удается покрыть засчет передачи энергии из Сибири на запад. К удобствам ЕЭС можно также отнести и возможность размещения элекростанции вдалеке от потребителя. Транспортировка электроэнергии обходиться во много раз дешевле, чем транспортировка газа, нефти или угля и при этом происходит мгновенно и не требует дополнительных транспортных затрат.

Если бы ЕЭС не существовало, то понадобилось бы 15 млн кВт дополнительных мощностей.  

Российская энергосистема  обоснованно считается одной  из самых надежных в мире. За 35 лет  эксплуатации системы в России в  отличие от США и Канады не произошло  ни одного глобального нарушения электроснабжения.

Несмотря на распад Единой Энергосистемы СССР большинство  энергосистем ныне независимых республик  все еще находятся под оперативным  управлением ЦДУ РФ. Большинство  независимых государств имеют отрицательное  сальдо в торговом балансе  электроэнергии с Россией.

Экологические проблемы, связанные с развитием  электроэнергетики и направления  перспективного развития и размещения электростанций России

За счет сжигания топлива (включая уголь, дрова и другие биоресурсы) в настоящее время производится около 90% энергии. Доля тепловых источников уменьшается до 80-85% в производстве электроэнергии. При этом в промышленно развитых странах нефть и нефтепродукты используются в основном для обеспечения нужд транспорта. Для угля характерна закономерность: при 22% в общем энергобалансе он является основным в получении электроэнергии (52%).

В мировом масштабе гидроресурсы обеспечивают получение около 5-6% электроэнергии, атомная энергетика, дает 17-18% электроэнергии. Причем в ряде стран она является преобладающей в энергетическом балансе (Франция - 74%, Бельгия -61%, Швеция - 45%).

В выбросах ТЭС содержится значительное количество металлов и  их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединений свыше 100 млн. доз, железа-400 млн. доз, магния -1,5 млн. доз. Летальный эффект этих загрязнителей не проявляется только потому, что они попадают в организмы в незначительных количествах. Это, однако, не исключает их отрицательного влияния через воду, почвы и другие звенья экосистем.

Можно считать, что тепловая энергетика оказывает отрицательное  влияние практически на все элементы среды, а также на человека, другие организмы и их сообщества.

Хотя в настоящее  время значительная доля электроэнергии производится за счет относительно чистых видов топлива (газ, нефть), однако закономерной является тенденция уменьшения их доли. По имеющимся прогнозам, эти энергоносители потеряют свое ведущее значение уже в первой четверти XXI столетия.

Выбросы ТЭС являются существенным источником такого сильного канцерогенного вещества, как бензопирен. С его действием связано увеличение онкологических заболеваний. В выбросах угольных ТЭС содержатся также окислы кремния и алюминия. Эти абразивные материалы способны разрушать легочную ткань и вызывать такое заболевание, как силикоз.

Имеются данные, что если бы вся сегодняшняя энергетика базировалась на угле, то выбросы СО, составляли бы 20 млрд. тонн в год (сейчас они близки к 6 млрд. т/год). Это тот предел, за которым прогнозируются такие изменения климата, которые обусловят катастрофические последствия для биосферы.

ТЭС - существенный источник подогретых вод, которые используются здесь как охлаждающий агент. Эти воды нередко попадают в реки и другие водоемы, обусловливая их тепловое загрязнение и сопутствующие ему цепные природные реакции (размножение водорослей, потерю кислорода, гибель гидробионтов, превращение типично водных экосистем в болотные и т. п.).

Экологические проблемы гидроэнергетики.

Одно из важнейших воздействий гидроэнергетики связано с отчуждением значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет использования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн. га земель. На их месте уничтожены естественные экосистемы. В равнинных условиях подтопленные земли могут составлять 10% и более от затопленных. Уничтожение земель и свойственных им экосистем происходит также в результате их разрушения водой (абразии) при формировании береговой линии. Абразионные процессы обычно продолжаются десятилетиями, имеют следствием переработку больших масс почвогрунтов, загрязнение вод, заиление водохранилищ. Таким образом, со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видового состава гидробионтов.

В водохранилищах резко  усиливается прогревание вод, что  интенсифицирует потерю ими кислорода  и другие процессы, обусловливаемые  тепловым загрязнением. Последнее, совместно с накоплением биогенных веществ, создает условия для зарастания водоемов и интенсивного развития водорослей, в том числе и ядовитых синезеленых (цианей). По этим причинам, а также вследствие медленной обновляемости вод резко снижается их способность к самоочищению.

В конечном счете, перекрытые водохранилищами речные системы  из транзитных превращаются в транзитноаккумулятивные. Кроме биогенных веществ, здесь  аккумулируются тяжелые металлы, радиоактивные  элементы и многие ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают проблематичным возможность использования территорий, занимаемых водохранилищами, после их ликвидации. Имеются данные, что в результате заиления равнинные водохранилища теряют свою ценность как энергетические объекты через 50-100 лет после их строительства. Несмотря на относительную дешевизну энергии, получаемой за счет гидроресурсов, доля их в энергетическом балансе постепенно уменьшается. Это связано как с исчерпанием наиболее дешевых ресурсов, так и с большой территориальной емкостью равнинных водохранилищ. Считается, что в перспективе мировое производство энергии на ГЭС не будет превышать 5% от общей.

Издержки гидростроительства для среды заметно меньше в  горных районах, где водохранилища  обычно невелики по площади. Однако в сейсмоопасных горных районах водохранилища могут провоцировать землетрясения.

Экологические проблемы ядерной энергетики.

Ядерная энергетика до недавнего  времени рассматривалась как  наиболее перспективная. Это связано  как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Достаточно отметить, что 0,5 кг ядерного топлива позволяет получать столько же энергии, сколько сжигание 1000 тонн каменного угля.

При нормальной работе АЭС  выбросы радиоактивных элементов  в среду крайне незначительны. В  среднем они в 2-4 раза меньше, чем от ТЭС одинаковой мощности.

 К наиболее крупным  авариям такого плана относится  случившаяся на четвертом блоке  Чернобыльской АЭС.

В результате аварии на Чернобыльской  АЭС радиоактивному загрязнению  подверглась территория в радиусе  более 2 тыс. км, охватившая более 20 государств. В пределах бывшего СССР пострадало 11 областей, где проживает 17 млн. человек. Общая площадь загрязненных территорий превышает 8 млн. га, или 80000 км2. В результате аварии погиб 31 человек и более 200 человек получили дозу радиации, приведшую к лучевой болезни. 115 тыс. человек было эвакуировано из наиболее опасной (30-километровой) зоны сразу после аварии. Число жертв и количество эвакуированных жителей увеличивается, расширяется зона загрязнения в результате перемещения радиоактивных веществ ветром, при пожарах, с транспортом и т. п. Последствия аварии будут сказываться на жизни еще нескольких поколений.

Неизбежный результат  работы АЭС - тепловое загрязнение. На единицу получаемой энергии здесь  оно в 2-2,5 раза больше, чем на ТЭС, где значительно больше тепла отводится в атмосферу. Выработка 1 млн. кВт электроэнергии на ТЭС дает 1,5 км3 подогретых вод, на АЭС такой же мощности объем подогретых вод достигает 3-3,5 км3.

Следствием больших  потерь тепла на АЭС является их более низкий коэффициент полезного действия по сравнению с ТЭС. На последних он равен 35%, а на АЭС - только 30-31 %.

В целом можно назвать  следующие воздействия АЭС на среду:

  • разрушение экосистем и их элементов (почв, грунтов, водоносных структур и т. п.) в местах добычи руд (особенно при открытом способе);
  • изъятие земель под строительство самих АЭС. Особенно значительные территории отчуждаются под строительство сооружений для подачи, отвода и охлаждения подогретых вод. Для электростанции мощностью 1000 МВт требуется пруд-охладитель площадью около 800-900 га. Пруды могут заменяться гигантскими градирнями с диаметром у основания 100-120 м и высотой, равной 40-этажному зданию;
  • изъятие значительных объемов вод из различных источников и сброс подогретых вод. Если эти воды попадают в реки и другие источники, в них наблюдается потеря кислорода, увеличивается вероятность цветения, возрастают явления теплового стресса у гидробионтов;
  • не исключено радиоактивное загрязнение атмосферы, вод и почв в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях.

Разработки коллективов  отраслевых и академических институтов легли в основу Концепции энергетической политики России в новых экономических  условиях. Концепция была представлена на рассмотрение в Правительство России рядом организаций - Минтопэнерго, Минэкономики, Миннауки России и Российской академей наук. Для реализации энергетической политики России в рамках комплексной энергетической программы было предложено несколько конкретных федеральных, межотраслевых и научно-технических программ. Среди основных программ предложены следующие :

  • Национальная программа энергосбережения. Результатом осуществления этой программы должна явиться ежегодная экономия в 50-70 млн. тонн условного топлива к 2010 году. В подпрограмме предлагается несколько принципиально новых мер    экономии первичных энергоресурсов, но и по замещению дефицитных видов энергоносителей на более дешевые и доступные. Предлагается, например, модернизировать нефтеперабатывающие заводы, улучшить переработку природного газа. Также здесь предлагается полностью использовать попутный газ, который в настоящее время попросту сжигается в факелах. Предполагается, что эти меры дадут эффект, соизмеримый с ежегодными размерами рентных платежей отраслей ТЭК.
  • Национальная программа повышения качества энергоснабжения.  Здесь предусмотрено повышение потребление энергии в бытовом секторе, газификация целых регионов, средних и малых населенных пунктов в сельской местности.
  • Национальная программа по защите окружающей среды от вредных воздействий энергетики. Целью программы является снижение в несколько раз выбросов газов в атмосферу, прекращение сброса вредных веществ в водоемы. Полностью отвергается здесь и идея равнинных ГЭС.
  • Национальная программа поддержки обеспечивающих ТЭК отраслей. Здесь предусматривается развитие энергостроения, предусмотренна подпрограмма по улучшению подготовки специалистов.
  • Газоэнергетическая программа “Ямал”. Программа предусматривает развитие газовой промышленности, рост производства конденсата и углубление нефтепереработки, реконструкцию электроэнергетики и системы теплоснабжения.
  • Программа освоения восточно-сибирской нефтегазовой провинции. Предполагается создать новый нефтегазодобывающий регион с годовой добычей 60-100 млн. тонн нефти,20-50 млрд. м3 газа, мощную нефте- и газотерерабатывающую промышленность. Развитие восточно-сибирской нефтегазовой провинции позволит России выйти на азиатско-тихокеанский рынок энергоносителей с экспортом 10-20 млн. тонн нефти и 15-20 млрд. м3 природного газа в Китай, Корею, Японию.
  • Программа повышения безопасности и развития ядерной энергетики. Предусмотрено использование компонентов ядерного оружия в электроэнергетике, создать более безопасные реакторы для АЭС.
  • Программа создания Канско-Ачинского угольно-энергетичекого комплекса, ориентированного на экологически приемлемое и экономически эффективное использование бурого угля для производства электроэнергии в огромном регионе России: от Урала и Поволжья на западе до Приморья на востоке.
  • Программа альтернативного моторного топлива. Предусмотрен крупномасштабный перевод транспорта на сжиженный газ.
  • Программа использования нетрадиционных возобновляемых источников энергии. При вводе мировых цен на энергоносители независимое энергоснабжение коттеджей, ферм и даже отдельностоящих городских домов становится экономически выгодным. 

Информация о работе Значение электроэнергетики в экономике России