Автор работы: Пользователь скрыл имя, 21 Октября 2013 в 19:59, реферат
Круговороты веществ и элементов отражают неразрывную связь геологических и биологических процессов в биосфере. Закономерный круговорот химических соединений отдельных элементов и осуществляется в ходе совместной деятельности различных живых организмов. Он включает введение химических элементов в состав живых клеток, химические превращения веществ в процессах метаболизма, выведение в окружающую среду и деструкцию органических веществ с последующей их минерализацией. Высвобождающиеся минеральные вещества вновь включаются в биологические циклы. Процессы круговорота происходят в конкретных экосистемах, но в полном виде реализуются только на уровне биосферы в целом.
Введение3
1. Круговорот веществ в природе4
2.Круговорот азота в природе7
2.1 Круговорот азота в цифрах10
3.Роль почвенных микроорганизмов в круговороте азота13
4.Факторы, влияющие на круговорот азота в антропогенных биоценозах16
Заключение18
Список литературы19
Содержание
Введение |
3 | |
1. |
Круговорот веществ в природе |
4 |
2. |
Круговорот азота в природе |
7 |
2.1 Круговорот азота в цифрах |
10 | |
3. |
Роль почвенных |
13 |
4. |
Факторы, влияющие на круговорот
азота в антропогенных |
16 |
Заключение |
18 | |
Список литературы |
19 |
Введение
Биосфера – это оболочка Земли, заселенная живыми организмами. Биосфера нашей планеты является сложной системой, в которой постоянно осуществляются круговороты различных веществ, тесно взаимосвязанных между собой. Азот – один из обязательных элементов важнейших органических соединений, из которых состоят ткани всех живых организмов (белков, АТФ, нуклеиновых кислот, т.д.).
Важным свойством биосферы является наличие в ней механизмов, обеспечивающих круговорот веществ и связанную с ним неисчерпаемость отдельных химических элементов, а также непрерывность биосферных процессов.
Круговороты веществ и элементов отражают неразрывную связь геологических и биологических процессов в биосфере. Закономерный круговорот химических соединений отдельных элементов и осуществляется в ходе совместной деятельности различных живых организмов. Он включает введение химических элементов в состав живых клеток, химические превращения веществ в процессах метаболизма, выведение в окружающую среду и деструкцию органических веществ с последующей их минерализацией. Высвобождающиеся минеральные вещества вновь включаются в биологические циклы. Процессы круговорота происходят в конкретных экосистемах, но в полном виде реализуются только на уровне биосферы в целом.
Азот непрерывно циркулирует в земной биосфере под влиянием различных химических и нехимических процессов, причем в последнее время связанный азот попадает в атмосферу в основном благодаря деятельности человека.
1. Круговорот веществ в природе
Круговоротами называются повторяющиеся процессы превращения и перемещения веществ в природе, имеющие более или менее выраженный циклический характер. Выделяют два основных круговорота: большой (геологический) и малый (биотический).
Большой круговорот происходит в течение сотен тысяч или миллионов лет. Горные породы подвергаются разрушению и выветриванию; продукты выветривания, в том числе растворенные в воде минеральные питательные вещества, сносятся потоками воды в мировой океан. В океане эти вещества образуют морские напластовывания, а также частично возвращаются на сушу с атмосферными осадками и с живыми организмами. Крупные медленные геотектонические изменения, процессы опускания материков и поднятия морского дна, приводят к возвращению морских отложений на сушу, после чего процесс проходит новый цикл.
Малый круговорот является частью большого круговорота и представляет собой процесс непрерывного создания и деструкции органического вещества в экосистемах в результате взаимосвязанного функционирования живых организмов.
Обмен веществ между живыми и неживыми компонентами биосферы изучает биогеохимия. Круговороты химических элементов из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии называются биогеохимическими циклами.
Рис. 1. Биогеохимический круговорот (заштрихованное кольцо) на фоне упрощенной схемы потока энергии (по Ю. Одуму, 1975): Pg – валовая продукция; Pn – чистая первичная продукция, которая может быть потреблена гетеротрофами в самой системе или же экспортирована; Р – вторичная продукция; R – дыхание
Схему биогеохимического цикла можно представить в сочетании с упрощенной схемой потока энергии, который приводит в движение круговорот веществ (рис. 2.3). В природе практически не наблюдается случаев, когда элементы равномерно распределены по всей экосистеме, к тому же они не всегда находятся в одной и той же форме. При изучении биогеохимических циклов изучают так называемый резервный фонд, то есть ту часть круговорота, которую условно можно считать отделенной физически или химически от организмов. Однако следует иметь в виду, что между доступными и недоступными фондами существует динамическое равновесие.
В каждом круговороте выделяют две части: резервный фонд и подвижный (обменный) фонд. В резервный фонд входят медленно движущиеся вещества, в основном небиологический компонент. Для обменного фонда характерен быстрый обмен между организмами и окружающей средой. Сравнительные объемы подвижных и резервных фондов имеют значение с точки зрения оценки антропогенной нагрузки на биосферу, так как изменению более подвержены малообъемные фонды.
Биогеохимические циклы разделяют на круговороты газов с резервным фондом в атмосфере и гидросфере и осадочные круговороты с резервным фондом в земной коре.
Благодаря наличию крупных атмосферных и океанических фондов в круговоротах газообразных веществ – углерода, азота, кислорода – довольно быстро компенсируются возможные нарушения. Эти круговороты «забуферены» и в этом отношении являются саморегулирующими системами. В осадочных циклах (фосфор, железо и др.) механизмы саморегуляции работают гораздо хуже и легко нарушаются, так как основная масса веществ в осадочных циклах находится в малоподвижном резервном фонде в земной коре.
2. Круговорот азота в природе
Азот — одно из самых распространенных веществ в биосфере, узкой оболочке Земли, где поддерживается жизнь. Так, почти 80% воздуха, которым мы дышим, состоит из этого элемента. Основная часть атмосферного азота находится в свободной форме, при которой два атома азота соединены вместе, образуя молекулу азота — N2. Из-за того, что связи между двумя атомами очень прочные, живые организмы не способны напрямую использовать молекулярный азот — его сначала необходимо перевести в «связанное» состояние. В процессе связывания молекулы азота расщепляются, давая возможность отдельным атомам азота участвовать в химических реакциях с другими атомами, например с кислородом, и таким образом мешая им вновь объединиться в молекулу азота. Связь между атомами азота и другими атомами достаточно слабая, что позволяет живым организмам усваивать атомы азота. Поэтому связывание азота — чрезвычайно важная часть жизненных процессов на нашей планете.
Рис. 2
Круговорот азота представляет собой ряд замкнутых взаимосвязанных путей, по которым азот циркулирует в земной биосфере. Рассмотрим сначала процесс разложения органических веществ в почве. Различные микроорганизмы извлекают азот из разлагающихся материалов и переводят его в молекулы, необходимые им для обмена веществ. При этом оставшийся азот высвобождается в виде аммиака (NH3) или ионов аммония (NH4+). Затем другие микроорганизмы связывают этот азот, переводя его обычно в форму нитратов (NO3–). Поступая в растения (и в конечном счете попадая в организмы живых существ), этот азот участвует в образовании биологических молекул. После гибели организма азот возвращается в почву, и цикл начинается снова. Во время этого цикла возможны как потери азота — когда он включается в состав отложений или высвобождается в процессе жизнедеятельности некоторых бактерий (так называемых денитрифицирующих бактерий), — так и компенсация этих потерь за счет извержения вулканов и других видов геологической активности.
Образно можно представить, что биосфера состоит из двух сообщающихся резервуаров с азотом — огромного (в нем находится азот, содержащийся в атмосфере и океанах) и совсем маленького (в нем находится азот, содержащийся в живых существах). Между этими резервуарами есть узкий проход, в котором азот тем или иным способом связывается. В нормальных условиях азот из окружающей среды попадает через этот проход в биологические системы и возвращается в окружающую среду после гибели биологических систем.
Наиболее важной формой фиксации азота является ферментативная фиксация в процессе жизнедеятельности сравнительно немногих видов организмов-азотфиксаторов. Отмирая, они обогащают среду органическим азотом, который быстро минерализуется. Наиболее эффективна фиксация азота, осуществляемая бактериями, формирующими симбиотические связи с бобовыми растениями. В результате их деятельности в наземных и подземных органах растений (например, клевера или люцерны) за год накапливается азота до 150-400 кг на 1 га. Азот связывают также свободноживущие азотфиксирующие почвенные бактерии, а в водной среде – сине-зеленые водоросли (цианобактерии). Все азотфиксаторы включают азот в состав аммиака (NH3), и он сразу же используется для образования органических веществ, в основном для синтеза белков. Минерализация азотсодержащих органических веществ редуцентами происходит в результате процессов аммонификации и нитрификации. Аммонифицирующие бактерии в процессе биохимического разложения мертвого органического вещества переводят азот органических соединений в аммиак, который в водном растворе образует ионы аммония (NH4+). В результате деятельности нитрифицирующих бактерий в аэробной среде аммиак окисляется в нитриты (NO2-), а затем в нитраты (NO3-).
Большинство растений получают азот из почвы в виде нитратов. Поступающие в растительную клетку нитраты восстанавливаются до нитритов, а затем до аммиака, после чего азот включается в состав аминокислот, составляющих белки. Часть азота растениями усваивается непосредственно в виде ионов аммония из почвенного раствора.
Животные получают азот по пищевым цепям прямо или опосредованно от растений. Экскреты и мертвые организмы, составляющие основу детритных пищевых цепей, разлагаются и минерализуются организмами-редуцентами, превращающими органический азот в неорганический.
Возвращение азота в атмосферу происходит в результате деятельности бактерий-денитрофикаторов, осуществляющих в анаэробной среде процесс, обратный нитрификации, восстанавливая нитраты до свободного азота.
Значительная часть азота, попадая в океан (в основном со стоком вод с континентов), используется водными фотосинтезирующими организмами, прежде всего фитопланктоном, а затем, попадая в цепи питания животных, частично возвращаются на сушу с продуктами морского промысла или птицами. Небольшая часть азота попадает в морские осадки.
2.1 Круговорот азота в цифрах
В атмосфере азота содержится примерно 4 квадрильона (4·1015) тонн, а в океанах — около 20 триллионов (20·1012) тонн. Незначительная часть этого количества — около 100 миллионов тонн — ежегодно связывается и включается в состав живых организмов. Из этих 100 миллионов тонн связанного азота только 4 миллиона тонн содержится в тканях растений и животных — все остальное накапливается в разлагающих микроорганизмах и в конце концов возвращается в атмосферу.
Главный поставщик связанного азота в природе — бактерии: благодаря им связывается приблизительно от 90 до 140 миллионов тонн азота (точных цифр, к сожалению, нет). Самые известные бактерии, связывающие азот, находятся в клубеньках бобовых растений. На их использовании основан традиционный метод повышения плодородия почвы: на поле сначала выращивают горох или другие бобовые культуры, потом их запахивают в землю, и накопленный в их клубеньках связанный азот переходит в почву. Затем поле засевают другими культурами, которые этот азот уже могут использовать для своего роста.
Некоторое количество азота переводится в связанное состояние во время грозы. Вы удивитесь, но вспышки молний происходят гораздо чаще, чем вы думаете, — порядка ста молний каждую секунду. Пока вы читали этот абзац, во всем мире сверкнуло примерно 500 молний. Электрический разряд нагревает атмосферу вокруг себя, азот соединяется с кислородом (происходит реакция горения) с образованием различных оксидов азота. И хотя это довольно зрелищная форма связывания, она охватывает только 10 миллионов тонн азота в год.
Таким образом, в результате естественных природных процессов связывается от 100 до 150 миллионов тонн азота год. В ходе человеческой деятельности тоже происходит связывание азота и перенос его в биосферу (например, все то же засевание полей бобовыми культурами приводит ежегодно к образованию 40 миллионов тонн связанного азота). Более того, при сгорании ископаемого топлива в электрогенераторах и в двигателях внутреннего сгорания происходит разогрев воздуха, как и в случае с разрядом молнии. Всякий раз, когда вы совершаете поездку на автомобиле, в биосферу поступает дополнительное количество связанного азота. Примерно 20 миллионов тонн азота в год связывается при сжигании природного топлива.