Характеристика приборов и методов измерения расходов воды

Автор работы: Пользователь скрыл имя, 15 Сентября 2015 в 19:49, курсовая работа

Краткое описание

Цель курсовой работы – рассмотреть характеристики приборов и методов измерения расходов воды. Для этого в курсовой работе решим следующие задачи:
рассмотри характеристику приборов, используемых для измерения расходов воды;
изучим характеристики основных методов измерения расходов воды.

Содержание

ВВЕДЕНИЕ..........................................................................................................3
ГЛАВА 1. ХАРАКТЕРИСТИКА ПРИБОРОВ, ИСПОЛЬЗУЕМЫХ ДЛЯ ИЗМЕРЕНИЯ РАСХОДОВ ВОДЫ...................................................................5
1.1 Приборы для измерение расхода открытых потоков............................5
1.2 Судовой автоматизированный комплекс «Створ» ...............................9
1.3 Гидрометрические вертушки...............................................................10
ГЛАВА 2. ХАРАКТЕРИСТИКА ОСНОВНЫХ МЕТОДОВ ИЗМЕРЕНИЯ РАСХОДОВ ВОДЫ..........................................................................................16
2.1 Измерение расхода воды гидрометрической вертушкой...................16
2.2 Измерение расхода воды поплавками..................................................19
2.3 Измерение расхода воды глубинными поплавками и поплавками-
интеграторами..............................................................................................19
2.4 Анализ расходов воды, измеренных детальным способом, с целью
выяснения возможности перехода на основной способ измерения........21
2.5 Анализ измерения расхода воды с целью перехода на сокращенный
способ............................................................................................................21
2.5.1 Градуирование вертушек в полевых условиях............................21
2.6 Ускоренные методы измерений расходов воды..................................22
2.6.1 Общая характеристика ускоренных методы измерений
расходов воды.........................................................................................22
2.6.2 Интеграционные измерения с движущегося судна......................26
2.6.3 Измерение расходов воды с использованием физических
эффектов....................................................................................................29
2.6.4 Аэрогидрометрический метод.......................................................35
ЗАКЛЮЧЕНИЕ.................................................................................................41
СПИСОК ИСПОЛЬЗЛВАННОЙ ЛИТЕРАТУРЫ..........................................42

Вложенные файлы: 1 файл

GOTOVO_Kursovaya_Kharakteristiki_priborov_i_metod.doc

— 1.05 Мб (Скачать файл)

 

2.5.1 Градуирование вертушек в полевых условиях

 

Производится в том случае, если невозможно отправить вертушку в тарировочный бассейн. Тарирование в текущей воде производится путём сравнения показаний испытуемой вертушки. Для этого в живом сечении реки намечают несколько точек с различными скоростями и в каждой из них сначала измеряется скорость исправной вертушкой, а за тем испытуемой и снова исправной. Вертушка в точке выдерживается не менее 250 сек. Скорость в точке принимается как среднее арифметическое из двух измерений исправной вертушкой. По числу оборотов испытуемой вертушки и по значению скорости исправной вертушки строится тарировочная кривая для тарируемой вертушки[6].

Полевое тарирование в стоячем водоёме может быть произведено способом непосредственного тарирования и путём сравнения с образцовой вертушкой.

Для полевого тарирования любым способом необходим водоём со стоячей водой (пруд, озеро) длиной 100-150м, глубиной не менее 10м, свободной от водной растительности. Для тарирования может быть использована вёсельная или моторная лодка. При непосредственном тарировании на носу лодки на особом выносе укрепляется штанга с испытуемой вертушкой, опускаемой на глубину не менее 0,5м от поверхности. Длинна выноса должна быть такой, чтобы расстояние от носа лодки до вертушки было не менее 1,5м.

При тарировании лодка движется с равномерной скоростью по линии ходового створа. Всего производится 20-30 заездов с разными скоростями. Тарирование производится с двумя секундомерами: по первому определяется время прохождения лодкой рабочего пути, а по второму – время между моментами начала и окончания поступления сигналов вертушки на пути тарирования. При обработке результатов тарирования для каждого заезда вычисляется скорость v и число оборотов лопастного винта в одну секунду n.

 

2.6 Ускоренные методы измерений расходов воды

 

2.6.1 Общая характеристика ускоренных методы измерений расходов воды

 

Многоточечные измерения расходов воды вертушками требуют значительных затрат времени. Конечно, в условиях изменчивости расходов воды при этом достигается наименьшая погрешность измерений, чем и окупается их большая продолжительность. Иначе обстоит дело, когда наблюдается явно выраженное неустановившееся движение воды, которое свойственно как естественным паводкам, так и попускам из водохранилищ. В таком случае большая продолжительность измерений порождает дополнительные погрешности, связанные с изменчивостью расходов воды. В этих условиях ускорение измерений обеспечивает не только экономию времени, но и повышение точности получаемых данных. Способы ускоренных измерений весьма многообразны: наряду с точечными наблюдениями они включают такие сложные, как f - интеграционные, акустические и аэрогидрометрические. Рассмотрим основные виды ускоренных измерений, как широко распространенные в настоящее время, так и предназначенные для внедрения в ближайшей перспективе[12].

При сокращенных способах измерения уменьшается количество скоростных вертикалей до одной - трех при условии, что среднее квадратическое отклонение получаемых при этом расходов от результатов измерения основным способом не превышает 5 %. Существует два варианта сокращенных измерений:

1) применение интерполяционно-гидравлической модели

2) использование его репрезентативных элементов

Интерполяционно-гидравлическая модель расхода воды основывается на представлении измеренной средней скорости на вертикали в виде суммы двух составляющих

 (1)

где vi - это компонент, измеренной скорости, гидравлически обусловлена глубиной на вертикали. Если считать уклон свободной поверхности и коэффициент шероховатости неизменным по ширине потока, то

 (2)

Причем

Вторая в общем случае знакопеременная компонента w зависит от особенностей кинематической структуры потока и поэтому названа структурной составляющей средней скорости на вертикали (она включает также средние случайные погрешности измерения).

Значения wi не следует за изменением глубин. Поэтому для среднего по ширине отсека допустима их линейная интерполяция. На основе чего можем представить себе вид следующей формулы

 

 (3)

На основе приведенных предпосылок И.Ф. Карасевым и В.А. Реминюком синтезирована следующая модель расхода воды, названная интерполяционно-гидравлической:

 (4)

где hs – средняя глубина в отсеке между скоростными вертикалями; Ps – весовой коэффициент: Ps = 0,5 для прибрежных отсеков (s = 1; s = N) ; Ps – 0,5 для всех остальных отсеков (1<s<N).

Значения а0 устанавливаются по характерным фазам режима на основе специальных многоточечных (детальных) измерений. Вместе с тем а0 вполне допустимо вычислять непосредственно по данным каждого конкретного измерения элементов расхода воды.

 (5)

где Nb – количество скоростных вертикалей.

Достоинство интерполяционно-гидравлической модели расхода воды по сравнению с моделью состоит в том, что она практически исключает систематическую погрешность – занижение расхода воды при сокращении числа скоростных вертикалей. Такой эффект достигается тем, что интерполяция средних скоростей на вертикалях vi(j) по ширине отсека между ними ведется с учетом распределения глубин. Отметим, что этим интерполяционно-гидравлическая модель превосходит и графический способ обработки расхода воды, в котором средние скорости на вертикалях интерполируются линейно.

При использовании интерполяционно-гидравлической модели достаточно измерять скорости всего на трех-четырех вертикалях, размещенных на равных расстояниях.

При устойчивом русле, когда площадь живого сечения F становится однозначной функцией уровня, все измерения расхода воды сводятся к определению средней скорости потока v. Но давно замечено, что её значение тесно связано со скоростями течения в какой-либо точке или со средней скоростью на вертикали, которые и носят название репрезентативных.

В качестве репрезентативной скорости принимается максимальная скорость в поперечном сечении потока или в точке стержневой вертикали на глубине 0,2h. При этом по данным предшествующих многоточечных измерений строится зависимость vcp=f(uмакс) или vcp=f(u0,2h), которая может аналитически быть представлена в виде уравнений регрессии:

 (6)

Координата точки с максимальной скоростью течения не остается постоянной, а теснота связи нередко оказывается недостаточной (рассеяние достигает 15%). Такая неопределенность не дает основания рассматривать uмакс как заведомо репрезентативный элемент для определения средней скорости потока. В связи с этим, заслуживает внимания предложение Е.П. Буравлева использовать в качестве репрезентативных средние скорости на вертикалях в прибрежных частях потока, расположенных на расстояниях 0,2В и 0,8В (считая от одного из урезов воды) [14].

Расчетное уравнение регрессии в таком случае приобретает вид

 (7)

Точность определения расхода воды по репрезентативным элементам неодинакова для различных фаз гидрологического режима. Если рассматривать отдельно взятый створ, то анализ показывает, что использование репрезентативных элементов приводит к достаточно надежным результатам лишь при относительно небольших расходах Q/Qмакс>0.25, где Qмакс – средний многолетний максимальный расход воды. Этим критериальным соотношением можно руководствоваться при организации измерений.

В каналах, где сохраняется призматичность и устойчивость формы русла, для определения vcp достаточно использовать одну репрезентативную вертикаль. По исследованиям А.А. Осиповича и В.П. Рагуновича (ЦНИИКИВР), эта вертикаль расположена на расстоянии 0,2b от уреза воды в канале (b - полуширина канала по дну – см.рис. 1). Отклонение местных скоростей течения на этой вертикали от средней для всего потока находится в пределах 2-3%.

Для ускорения измерений средних скоростей на вертикалях служат установки – интегратор ГР-101 и полуавтоматическая штанга с батареей микровертушек, разработанная М.И. Бирицким (ЦНИИКИВР) [6].

 

2.6.2 Интеграционные измерения с движущегося судна

 

Интеграция скоростей течения с движущегося судна может производится:

а) вертушкой (или другим преобразователем скорости), закрепленной на определенном (постоянном) горизонте (горизонтальная интеграция);

б) Вертушкой, перемещаемой зигзагообразно от поверхности до дна потока и обратно в течение всего времени движения судна по створу.

Зигзагообразная интеграция в связи с техническими трудностями не получила распространения, поэтому ниже рассматривается только горизонтальная.

Рис.2.1 Принципиальная схема интеграционного измерения расхода воды с движущегося судна.

а – геометрические элементы схемы, б – сложение векторов скоростей

Горизонтальная интеграция скоростей обычно производится в поверхностном слое, так как коэффициенты перехода от поверхностей к средней скорости течения потока наиболее изучены. Принципиальная схема интеграционного измерения показана на рис.2.1, а один из вариантов приборного комплекса, разработанного в ГГИ. Непосредственно измеряются:

а) глубина h по створу (их регистрирует эхолот),

б) результирующая скорость up – векторная сумма поверхностоной скорости течения uп и скорости движения судна uc,

в) угол α между осью вертушки и линией гидроствора. Если все эти элементы отнести к элементарному отсеку потока s шириной, равной расстоянию, которое судно проходит по створу за достаточно короткий интервал времени ∆t:

то можно получить фиктивный частичный расход в этом отсеке

Затем значения qфs умножаются на коэффициент К, обеспечивающий переход от фиктивного расхода к действительному. Этот коэффициент должен быть заранее известен для данного створа по результатам специальных наблюдений. Действительные значения qs в специальном вычислительном блоке последовательно суммируются (интегрируются) по мере движения судна вдоль гидроствора от одного берега к другому за время Т, что позволяет получить полный расход воды

 (8)

При косоструйном течении растет uп и us становится более сложным и требует учета угла косоструйности αк, который заранее не известен. Однако если угол косоструйности не слишком велик (менее 200), можно использовать ту же формулу (8). Для компенсации возникающих при этом погрешностей интеграцию скоростей рекомендуется производить дважды (от одного берега к другому и обратно), а в качестве результата измерений принимать полусумму полученных значений.

Одно из главных метрологических преимуществ горизонтальной интеграции скоростей течения состоит в том, что она устраняет погрешность интерполяции средних скоростей на вертикалях, а при вертикальной дискретизации модели расхода воды эта погрешность является основной[7].

Выражение (8) относится к случаю, когда интеграция скоростей течения производится в поверхностном слое при незаглубленном измерителе скорости (z=0). Если же на реке наблюдается заметное волнение, появляется плывущий мусор или ледяные образования, приходится опускать измеритель ниже поверхности воды на глубину z. Измеряемый при этом расход Qz окажется не равным фиктивному расходу Qп. Соответствующий поправочный коэффициент определяется по зависимости, полученной И. Ф. Карасевым:

где β = (bл+bп)/B – непрозондированная часть ширины русла (см. рис.1); φ = hмакс /hcp – коэффициент полноты сечения; m = 24,0 м0,5/с – эмпирический коэффициент Базена.

Переход к действительному расходу совершается по соотношению

Точность интеграционного измерения скорости течения существенно зависит от скорости перемещения судна по створу uc: при ее увеличении возникают погрешности измерения не только из-за малости времени интеграции Т, но и из-за уменьшения uп/uc. Чтобы не допустить чрезмерного возрастания рассматриваемой погрешности, скорость перемещения судна uc должна быть ограничена некоторым достаточно малым значением, при котором еще сохраняется устойчивость судна на курсе. Опыт показывает, что эта скорость близка к поверхностной скорости потока uп.

 

2.6.3 Измерение расходов воды с использованием физических эффектов

 

Для измерения скоростей течения (а значит, и расходов воды) могут быть использованы различные физические эффекты: Доплера, ультразвуковые и электромагнитная индукция.

Доплеровский метод измерения скоростей течения реализуется в двух вариантах: с использованием оптических квантовых генераторов и радиолокатора.

При лазерных измерениях источником информации о скорости потока служат спектральные характеристики света. Если поток, движущийся со скоростью v, просвечивается когерентным монохроматическим излучением с частотой ω0 и волновым вектором Ао, а рассеянное излучение при частоте ωi наблюдается в направлении волнового вектора As, то значение v устанавливается непосредственно по разности частот и векторов

v = (ωi — ω0)/(As — A0).

Рассеяние света создается частицами взвесей, которые содержатся в потоке или вводятся в него. Лазерные установки пока нашли применение в трубопроводах и лабораторных лотках (

Информация о работе Характеристика приборов и методов измерения расходов воды