Выращивание кристаллов

Автор работы: Пользователь скрыл имя, 02 Июля 2013 в 21:41, отчет по практике

Краткое описание

Доказано, что кристаллическое строение свойственно подавляющему большинству минералов и горных пород, слагающих земную кору, а значит имеет первостепенное значение в строении Земли. В промышленности все материалы (металлы и сплавы, каменные строительные материалы, цемент и кирпич, и п.т.) состоят из кристаллических зерен минералов. Кристаллография создала целый ряд специальных кристаллографических методик, имеющих большое практическое значение и распространение.

Содержание

ВВЕДЕНИЕ
1. Генезис минералов
1.1 Эндогенный процесс
1.2 ЭКЗОГЕННЫЙ ПРОЦЕСС
1.3 Метаморфический процесс
1.4 Парагенезис
2. Методы выращивания кристаллов
2.1 Сублимация
2.2 Химические реакции в газовой фазе
2.3 Химические транспортные реакции
2.4 Выращивание кристаллов из жидкой фазы
2.5 Методы выращивания кристаллов из расплава
2.6 Выращивание кристаллов из раствора
2.7 Выращивание кристаллов с использованием реакций между веществами в твёрдом состоянии
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

Вложенные файлы: 1 файл

Министерство образования и науки РФ.docx

— 39.68 Кб (Скачать файл)

Метод выращивания кристаллов из растворов  в высокотемпературных расплавах (раствор в расплаве) получил развитие в связи с выращиванием монокристаллов сложных многокомпонентных систем. Используется высокая растворимость  тугоплавких соединений в жидких неорганических солях и оксидах. Процесс осуществляется на воздухе  при температуре плавления кристаллизуемого вещества. Этот метод был в числе  первых, примененных в конце 19 в. для выращивания технически важных кристаллов (для выращивания кристаллов корунда). Его используют для выращивания  монокристаллов иттрий-железистого граната, титаната бария и др.

Зонная раствор-расплавная кристаллизация (зонная перекристаллизация градиентом температуры (ЗПГТ) или зонная плавка с растворителем) аналогична зонной плавке и заключается в том, что  благодаря температурному градиенту  происходит перемещение узкой зоны раствора вдоль образца. На границе  между затравочным кристаллом и  поликристаллическим слитком вещества предварительно помещают тонкий слой (толщиной порядка 1 мм) твердого вещества, которое будет служить растворителем.

2.7 Выращивание кристаллов с  использованием реакций между  веществами в твёрдом состоянии

 

Из твёрдой фазы кристаллы можно  получить при рекристаллизации поликристаллического материала или при протекании твёрдофазных реакций (например, 2AgI + HgI2→Ag2 HgI4). Метод рекристаллизации обычно используют для получения монокристаллов некоторых металлов. Поликристаллический материал деформируют холодной обработкой и затем отжигают для рекристаллизации в монокристалл. Аналогично зонной плавке некоторые авторы использовали зонную рекристаллизацию. Неметаллы деформировать холодной обработкой часто не удаётся, так как образуются трещины, и поэтому рекристаллизации должна выполняться без этого подготовительного этапа. Таким образом, получены монокристаллы закиси меди.

В другом методе тонкоизмельчённые  частицы вещества, подлежащего рекристаллизации, подаются на подогреваемую монокристаллическую  подложку из того же или изоморфного  ему вещества. Так были получены монокристаллы сложных ферритов. Иногда вместо самого вещества используются твёрдые соединения, при химическом взаимодействии которых образуется нужное вещество. Неудобство обоих  методов – очень малая скорость роста, например, слои толщиной порядка 0,1 мм вырастают за 24 часа.

Однако следует подчеркнуть, что  реакции в твёрдой Фазе лежат  в основе обычных методов приготовления  поликристаллических соединений. Например, ферриты получают нагреванием смеси  окислов компонентов. Либо легко  разлагающихся соединений – гидроокисей, карбонатов и нитратов, которые при  разложении дают окислы. Аналогичные  методы используют для приготовления  люминесцентных материалов.

Твердофазные реакции такого типа подробно исследованы Хедваллом, Яндером и Хюттингом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

 

История развития (генезис) горных пород  и минералов представляет исключительную ценность при оценке месторождений  полезных ископаемых, так как им определяется строение и иногда даже состав полезного ископаемого, условия  залегания и нередко мощность месторождения, предопределяются приемы эксплоатации и пр.

В дальнейшем мы должны будем отличать горные породы от минералов. Горные породы представляют собою большие минеральные  массы, принимающие существенное участие  в строении земной коры, а минералы - это в большинстве небольшие  по размерам, физически и химически  более или менее однородные продукты, образующиеся в горных породах, главным  образом в результате физико-химических процессов.

Само собою разумеется, что не все минералы или горные породы имеют  значение полезных ископаемых, многие еще до сих пор не нашли себе применения в народном хозяйстве. Однако мы наблюдаем, что по мере развития наук, особенно химии, металлургии и  других, все большее и большее  количество минеральных тел земной коры переходит в разряд полезных ископаемых. В конечном счете, одни раньше, другие позже, но все минералы и горные породы найдут себе, то или  иное применение в народном хозяйстве, а так называемые «пустые породы»  исчезнут. Приведу несколько примеров.

Хорошим примером могут служить  так называемые бросовые соли, залегавшие поверх каменной соли. Вначале их не умели использовать и бросали  в отвал. Лишь после того как химик  Либих показал, что среди бросовых солей имеется минерал сильвин - хлористый калий, представляющий собою  ценнейшее удобрительное средство, его месторождения стали всюду  искать. Укажу, что США до настоящего времени израсходовали более 30 млн. золотых долларов на мало успешные поиски сильвина в своей стране.

Только после Великой Октябрьской  социалистической революции на Кольском полуострове в Хибинских горах были найдены колоссальные залежи апатита, имеющего исключительную ценность в качестве фосфористого удобрения. Минерал этот залегает здесь вместе с нефелином. Была построена обогатительная фабрика, на которой апатит отделяется от нефелина, вначале не находившего себе применения. Но в последнее время, после ряда изысканий Академии наук, нефелин применяется уже в 23 видах промышленности и нисколько не уступает апатиту по своей ценности в народном хозяйстве нашей страны.

Следует отметить, что скопление  в земной коре того или другого  применяемого в народном хозяйстве  полезного ископаемого лишь тогда  может быть названо его месторождением, когда разработка последнего экономически выгодна, что, в свою очередь, зависит  от целого ряда условий: от процентного  содержания полезного элемента в  породе, от условий залегания, от наличия  дешевых путей сообщения, от климатических  условий и многого другого. Конечно, приемы разработки месторождений имеют также большое значение в деле добычи полезного ископаемого. Всякому теперь ясно, что себестоимость тонны руды, добытой кустарными приемами, всегда обходятся дороже, чем в случае применения мощных технических средств, но применение последних требует, чтобы и самое месторождение было достаточно мощным.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

 

1. В.П. Ананьев, А.Д. Потапов «Основы  геологии, минералогии и петрографии», 2005

2. М.И. Каденская «Руководство к практическим занятиям по минералогии и петрографии», МГЗПИ, 1976

3. Ф. Крегер «Химия несовершенных кристаллов», 1969

4. В.С. Урусов «Теоретическая кристаллохимия»,1987

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Выращивание кристаллов