Современные методы выращивания кристаллов

Автор работы: Пользователь скрыл имя, 04 Марта 2013 в 14:36, доклад

Краткое описание

Для того чтобы минерал образовал хороший кристалл, ему необходимы условия для роста, т. е. свободное пространство. Обычно горные породы являются очень плотными, и минералы, которые в них образуются, имеют неправильные формы. Прозрачные и почти идеальные по форме кристаллы самоцветов образуются в полостях трещин и других пустотах. В камерах и занорышах пeгмaтитoв растут кристаллы топазов, изумрудов, турмалинов, в полостях кварцевых жил — кристаллы аметиста, горного хрусталя и т. д.

Вложенные файлы: 1 файл

Современные методы выращивания кристаллов.docx

— 35.70 Кб (Скачать файл)

Как получаются драгоценные камни  в природе 

и как получают их искусственно

В начале было уже сказано о том, какие природные геологические процессы существуют. Большинство драгоценных камней образуется в результате процессов, требующих высоких температур и давлений.

Для того чтобы минерал образовал  хороший кристалл, ему необходимы условия для роста, т. е. свободное  пространство. Обычно горные породы являются очень плотными, и минералы, которые  в них образуются, имеют неправильные формы. Прозрачные и почти идеальные  по форме кристаллы самоцветов образуются в полостях трещин и других пустотах. В камерах и занорышах пeгмaтитoв растут кристаллы топазов, изумрудов, турмалинов, в полостях кварцевых жил — кристаллы аметиста, горного хрусталя и т. д. При экзогенных процессах, когда происходит разрушение и выветривание пород, драгоценные камни, как более устойчивые, охраняются и накапливаются в коре выветривания и россыпях. Тем самым они становятся более доступными для добычи, потому что гораздо легче доставать минералы из рыхлых пород, чем из твердых.

При искусственном выращивании  кристаллов в аппаратах создаются  те же физико-химические условия, которые  характерны для природных процессов. Даже некоторые термины, которые  издавна используются геологами  и минералогами, нашли применение в техническом языке, например термин «гидротермальные условия».

Монокристаллы ряда элементов и  многих химических веществ обладают замечательными механическими, электрическими, магнитными и оптическими свойствами. Так, например, алмаз тверже любого другого минерала, встречающегося на Земле. Кристаллы кварца и слюды  обладают рядом электрических свойств, обеспечивающих им широкое применение в технике. Кристаллы флюорита, турмалина, исландского шпата, рубина и многие другие находят применение при изготовлении оптических приборов.

К сожалению, в природе монокристаллы  большинства веществ без трещин, загрязнений и других дефектов встречаются  редко. Это привело к тому, что  многие кристаллы на протяжении тысячелетий  люди называют драгоценными камнями. Алмаз, рубин, сапфир, аметист и другие драгоценные  камни долгое время ценились людьми очень высоко в основном не за особые механические или другие физические свойства, а лишь из-за своей редкости. Развитие науки и техники привело  к тому, что многие драгоценные  камни или просто редко встречающиеся  в природе кристаллы стали  очень нужными для изготовления деталей приборов. Потребность во многих кристаллах возросла настолько, что удовлетворить ее за счет расширения масштабов выработки старых и  поисков новых природных месторождений  оказалось невозможно.

Кроме того, для многих отраслей техники  и особенно для выполнения научных исследований все чаще требуются монокристаллы очень высокой химической чистоты с совершенной кристаллической структурой. Кристаллы, встречающиеся в природе, этим требованиям не удовлетворяют, так как они растут в условиях, весьма далеких от идеальных.

Таким образом, возникла задача разработки технологии искусственного изготовления монокристаллов.

Первые попытки искусственно получить замечательные минералы человек  предпринимал с давних пор. Еще в  средние века алхимики с помощью  философского камня пытались превратить простые вещества в драгоценные  камни. Но все это были попытки  с негодными средствами, потому что  алхимики совершенно не представляли законов строения вещества. Успех  пришел лишь тогда, когда был в  достаточной мере познан процесс  минералообразования. В настоящее время существует целый ряд способов выращивания кристаллов. Исходное вещество может быть твердым, растворенным или расплавленным, даже может находиться в газообразном состоянии. Из более чем 3000 минералов, существующих в природе, искусственно удалось получить уже несколько сот. Трудности синтеза связаны с необходимостью очень точного соблюдения режима выращивания кристаллов.

Но даже искусственно выращенные кристаллы  часто имеют дефекты. Сейчас производятся опыты по выращиванию кристаллов в космосе в условиях невесомости. Первые опыты, проведенные на палубе космического корабля «Салют», показали, что это направление является весьма перспективным.

Из всех замечательных минералов  наиболее высокие температуры и  давления необходимы для образования  алмазов. В природе их находят  в так называемых кимбёрлитовых трубках, которые образуются в результате взрыва газов на глубинах свыше 50 км. Кимберлит представляет собой ультраосновную породу, получившую название по руднику Кимберли в Южной Африке. Температура на этих глубинах составляет 1000—1100°С, а давление превышает несколько десятков атмосфер. Но и таких высоких давлений оказывается недостаточно. Как показывает синтез искусственных алмазов, для их образования необходимы поистине чудовищные давления в десятки тысяч атмосфер. Только в таких условиях углерод, хорошо известный нам по графиту, из которого делают карандаши, может перейти в гексагональную модификацию и дать вместо черной массы прозрачные кристаллы. Как же достигаются такие сверхвысокие давления в глубинах Земли? Предполагают, например, что это осуществляется за счет механизма кавитации локального повышения давления в результате взрыва газовых пузырьков. Полуразрушенный материал кимберлитов при взрыве с большой силой устремляется к поверхности Земли по тектоническим трещинам. Вместе с алмазами в кимберлитах находят скопления ювелирного граната — пиропа фиолетово-красного и оранжево-красного цвета, а также хризолита. Однако хризолит ювелирного качества, как менее устойчивый минерал, сохраняется лишь в свежих невыветренных породах.

Первые алмазоносные трубки взрыва были открыты в 1870 г. в Южной Африке. В последние десятилетия алмазные трубки открыты у нас в Якутии. Алмазы добываются также из россыпей, образовавшихся в результате размыва  коренных месторождений.

Около ста лет назад люди впервые  попытались получить синтетический  алмаз. Первая удача пришла к англичанину  Ганнею в 1889 г. Он получил мелкие кристаллики алмаза в порах чугуна, где нaxoдилиcь костное масло, литий и углерод. Раскаленный чугун подвергался резкому охлаждению. Эти первые искусственные алмазы хранятся в Британском музее. Получить новые кристаллы таким способом уже никому не удалось, хотя попыток было сделано немало. Получение алмазов из простого угля казалось в то время совершенно фантастическим. Помните одного из героев рассказа Герберта Уэллса? Он наполнял стальной цилиндр графитовой смесью и взрывчаткой и нагревал его в топке. Затем два года заставлял остывать, чтобы кристаллы алмазов достигли значительного размера. Как пишет Г. Уэллс: «Я решил дать остывать моей аппаратуре два года, чтобы температура снижалась постепенно. Под конец я перестал поддерживать огонь. Я извлек цилиндр и вскрыл его, он был еще так горяч, что обжигал мне руки, выскреб стамеской хрупкую лавообразную массу и размельчил ее молотком нa чугунной плите. Я обнаружил три крупных и пять мелких алмазов». Разумеется, этот способ получения алмазов совершенно фантастический, и алмазы таким путем получить нельзя.

И только в середине XX в. фантастика стала реальностью. В 1955 г. была разработана  специальная аппаратура, создающая  давление в десятки и сотни  тысяч атмосфер при температурах 1200—1500°С. В 1960 г. на июльском пленуме  ЦК КПСС было объявлено о получении  синтетического алмаза в СССР. Советский  искусственный алмаз марки САМ (синтетический алмаз монокристальный) с 1965 г. выпускается в промышленных количествах. Алмазы получают из порошка  графита, смешанного с никелем. Смесь  прессуется в виде небольших дисков размером до 2—3 см, которые затем  нагреваются до температуры 2000—3000°С при давлении до 10* 109 Па. В таких поистине невероятных условиях графит превращается в алмаз. Разумеется, прежде чем строить такие сложные установки, процесс перехода графита в алмаз был изучен теоретически. Исходя из термодинамических свойств того и другого минерала, была рассчитана теоретическая кривая перехода графит — алмаз.

Получаемые кристаллы имеют  кубическую или октаэдрическую форму. По твердости они даже превосходят естественный алмаз. Производство искусственных алмазов в настоящее время практически целиком направлено для нужд буровой техники и абразивной промышленности. Ювелирные кристаллы алмазов пока получены в незначительном количестве. 

Был даже сконструирован специальный  робот, который вырабатывает алмазы.

На железную ладонь робота кладут сырье — графит. Робот вкладывает графит в свою «грудь»—печь, в которой графит нагревается до высоких температур при больших давлениях. В конце концов опять же на ладонь робота выпадает кристалл синтетического алмаза в форме небольшого шарика.

Способы искусственного получения  ювелирных алмазов в условиях высоких давлений сейчас технически освоены, но экономически нерентабельны  из-за низкой скорости процесса. Наиболее перспективным в настоящее время, считается метод выращивания  алмазов при совместном отложении  графита и алмаза при температурах 1000—1200°С из углесодержащего газа (CHi иди CSi). Затем графит сжигается в водородной среде при давлении 5 • 105— 20 • 105 Па и получается чистый алмаз.

Обратимся теперь к другой группе драгоценных камней — рубинам  и сапфирам. Эти замечательные  минералы, представляют собой оксид  алюминия (глинозем), в природе встречаются  в различных магматогённых и метаморфических породах. Глинозем входит в состав многих минералов горных пород, и для того, чтобы он выделился в свободном виде, как самостоятельный минерал, порода должна быть богата алюминием. Чтобы вместо обычного корунда, имеющего тот же химический состав, выделялись благородные рубин и сапфир, необходимы благоприятные условия для роста кристаллов и содержание в породе определенных химических элементов. Поэтому природные месторождения драгоценных рубинов и сапфиров очень редки. Наиболее известны месторождения в Индии и Шри Ланка.

Извлекать кристаллы из плотных  метаморфических или магматических  пород очень сложно, поэтому основное значение для добычи рубина и сапфира  имеют остаточные и россыпные  месторождения.

Искусственный рубин был впервые  получен в начале нашего века в  небольшой лаборатории в окрестностях Парижа. Выдающийся советский минералог  А. Е. Ферсман так описывал эту  лабораторию в 1936 г. «В тихой улице  захолустного городка около Парижа маленькая грязненькая лаборатория. В тесном помещении среди паров  и накаленной атмосферы на столах несколько цилиндрических приборов с синими окошечками. Через них химик следит за тем, что делается в печи, регулирует пламя, приток газа, количество выдуваемого белого порошка. Через короткий промежуток 5-6 ч он останавливает печь и с тоненького красного стерженька снимает красную прозрачную грушу,..». Этот способ получения искусственного рубина известен под названием «метод профессора Вернейля». Порошок оксида алюминия непрерывно поступает в зону печи, где происходит горение водорода в кислороде. При создавшейся высокой температуре порошок плавится. Капли расплавленной массы падают вниз и попадают на маленький кристаллик рубина, который помещается здесь в качестве затравки. На затравке кристаллизуется прозрачная «булька» — грушевидный монокристалл рубина, который постепенно растет вверх. В России в настоящее время работают аппараты системы Попова, которые позволяют получать синтетические монокристаллы рубина в виде стержней диаметров 2—4 см и длиной до 2 м. Самым новым методом получения искусственных рубина и сапфира является метод диффузионной плавки постепенно вытесняющий метод Вернейля.

Красная окраска искусственного рубина получается за счет добавки оксида хрома. При добавлении к порошку  глинозема других веществ получают синюю окраску сапфира или  оранжевые, желтые, зеленые, розовые, фиолетовые окраски, которых в природе нет. Искусственные рубины и сапфиры  чище, прозрачнее и дешевле природных. Они широко применяются для изготовления ювелирных изделий.

Целая группа драгоценных камней (топаз, аквамарин, изумруд, турмалин, аметист, горный хрусталь и др.) в природных  условиях связана с пегматитовыми  и гидротермальными образованиями. Рост кристаллов в таких условиях происходит в пустотах горных пород. Размеры этих пустот могут достигать  несколько десятков кубических метров, хотя обычно их объемы не превышают нескольких кубических дециметров. Пустоты образуются под воздействием самых разнообразных геологических причин и в минералогии имеют различные названия: камеры, заморыши, жеоды, миндалины и т. д. Кристаллы в этих пустотах омываются, горячими гидротермальными растворами, содержащими различные вещества. Обычно в таких пустотах растут не единичные кристаллы, а целые их семейства, которые называются друзами. Расскажем, к примеру, как образуются в природе изумруды, которые пока еще не были получены искусственно. Месторождения изумрудов обычно связаны с пегматитами, где ювелирные кристаллы формируются в камерах. Известны также месторождения изумрудов в метаморфических породах, переработанных бериллиеносными растворами. Поскольку благородная темно-зеленая окраска изумруда объясняется присутствием в минерале хрома, необходимо, чтобы этот элемент содержался в породе в значительных количествах. Иначе вместо изумруда образуется обыкновенный берилл. Поэтому месторождения изумрудов чаще всего залегают среди ультраосновных пород, богатых хромом, железом, магнием и другими элементами. Примером таких месторождений могут служить знаменитые копи Урала. Известные месторождения изумруда в Колумбии образовались при низких температурах не более 100 – 1800 С в результате просачивания минералообразующих растворов через известняк и отложения изумрудов в полостях, образовавшихся при растворении известняков горячими растворами.

Из этой группы замечательных минералов  наиболее, освоено искусственное  получение горного хрусталя. Сейчас в нашей стране практически все  виды аппаратуры, использующие горный хрусталь (кварц), работают на синтетических  кристаллах. Искусственные кристаллы  горного хрусталя получают в гидротермальных  условиях. Это слово «гидротермальные» мы употребляли при описании природных условий образования минералов. Оно используется и в технике для обозначения условий получения кристаллов из «горячей воды». Кристаллы выращивают в специальных трубах — автоклавах высотой несколько метров. Автоклавы изготовляют из нержавеющей высоколегированной стали и покрывают изнутри серебром. Это делается для того, чтобы на трубе не образовалась ржавчина, которая при попадании в растущий кристалл кварца может вызвать различные нежелательные дефекты монокристалла. В нижней части трубы размещается кварцевый песок, через который просачивается вода с добавками щелочей. Процесс происходит при температуре несколько сот градусов и высоком давлении. В этих условиях кремнезем растворяется в воде, насыщенный раствор кремнезема в воде омывает маленький затравочный кристалл кварца, помещенный в верхней части автоклава. Кристалл растет в автоклаве несколько месяцев, а особо чистые кристаллы растут несколько лет. Требования технологии очень высоки: температурный режим, например, нe может изменяться даже на доли градуса в течение всего роста кристалла. В таких условиях выращивают кристаллы горного хрусталя массой до 15 кг.

Информация о работе Современные методы выращивания кристаллов