Автор работы: Пользователь скрыл имя, 07 Января 2013 в 23:22, курсовая работа
На 71% Земная поверхность покрыта водой. Земля - единственная планета, на которой вода может существовать в жидком виде на поверхности (хотя, возможно, на поверхности Титана есть жидкий этан или метан и жидкая вода под поверхностью Европы - спутника Юпитера). Жидкая вода, как мы знаем, необходима для жизни. Способность океанов сохранять тепло также очень важна в поддержании относительно устойчивой температуры Земли. Жидкая вода также ответственна за эрозию и выветривание континентов Земли - процесс, уникальный в солнечной системе сегодня (хотя, возможно, это произошло в прошлом на Марсе).
Введение
Модель строения Земли
Современные данные о сейсмических границах
Состав верхней мантии
Состав мантии ниже границы 670 км
Новая модель строения мантии
Химия Земли
Заключение
Список использованной литературы
Таблица 1. Минеральный состав пиролита (по Л. Лиу, 1979)
Так появилась идея о том, что скачок в скоростях сейсмических волн на глубине 410 км связан в основном со структурной перестройкой пироксен-гранат внутри обогащенных Na частей верхней мантии. Такая модель предполагает почти полное отсутствие конвекции в верхней мантии, что противоречит современным геодинамическим представлениям. Преодоление этих противоречий можно связать с недавно предложенной более полной моделью верхней мантии [2], допускающей вхождение атомов железа и водорода в структуру вадслеита.
Рис. 2. Изменение объемных про- порций минералов пиролита при возрастании давлений (глуби- ны), по М. Акаоги (1997).
Условные обозначения минералов: Ol - оливин, Gar - гранат, Cpx - моноклинные пироксены, Opx - ромбические пироксены, MS - "модифицированная шпинель", или вадслеит (b-(Mg, Fe)2SiO4), Sp - шпинель, Mj - меджорит Mg3(Fe, Al, Si)2(SiO4)3, Mw - магнезиовюстит (Mg, Fe)O, Mg-Pv -Mg-перовскит, Cа-Pv-Cа- перовс- кит, X - предполагаемые Al-содержащие фазы со структурами типа ильменита, Cаферрита и/или голландита.
В то время как полиморфный переход оливина в вадслеит не сопровождается изменением химического состава, в присутствии граната возникает реакция, приводящая к образованию вадслеита, обогащенного Fe по сравнению с исходным оливином. Более того, вадслеит может содержать значительно больше по сравнению с оливином атомов водорода. Участие атомов Fe и Н в структуре вадслеита приводит к уменьшению ее жесткости и соответственно уменьшению скоростей распространения сейсмических волн, проходящих сквозь этот минерал.
Кроме того, образование обогащенного Fe вадслеита предполагает вовлечение в соответствующую реакцию большего количества оливина, что должно сопровождаться изменением химического состава пород вблизи раздела 410. Идеи об этих трансформациях подтверждаются современными глобально сейсмическими данными. В целом минералогический состав этой части верхней мантии представляется более или менее ясным. Если говорить о пиролитовой минеральной ассоциации (табл. 1), то ее преобразование вплоть до глубин ~800 км исследовано достаточно детально и в обобщенном виде представлено на рис. 2. При этом глобальной сейсмической границе на глубине 520 км соответствует перестройка вадслеита b-(Mg, Fe)2SiO4 в рингвудит - g-модификацию (Mg, Fe)2SiO4 со структурой шпинели. Трансформация пироксен (Mg, Fe)SiO3 гранат Mg3(Fe, Al, Si)2Si3O12 осуществляется в верхней мантии в более широком интервале глубин. Таким образом, вся относительно гомогенная оболочка в интервале 400-600 км верхней мантии в основном содержит фазы со структурными типами граната и шпинели.
Все предложенные в настоящее время модели состава мантийных пород допускают содержание в них Al2O3 в количестве ~4 вес. %, которое также влияет на специфику структурных превращений. При этом отмечается, что в отдельных областях неоднородной по составу верхней мантии Al может быть сосредоточен в таких минералах, как корунд Al2O3 или кианит Al2SiO5, который при давлениях и температурах, cответствующих глубинам ~450 км, трансформируется в корунд и стишовит - модификацию SiO2, структура которой содержит каркас из SiO6 октаэдров. Оба этих минерала сохраняются не только в низах верхней мантии, но и глубже.
Важнейший компонент химического состава зоны 400-670 км - вода, содержание которой, по некоторым оценкам, составляет ~0,1 вес. % и присутствие которой в первую очередь связывают с Mg-силикатами [3]. Количество запасенной в этой оболочке воды столь значительно, что на поверхности Земли оно составило бы слой мощностью 800 м.
Проведенные в последние
два-три десятилетия
Исключительная стабильность MgSiO3 со структурой типа ромбического перовскита в широком диапазоне давлений, соответствующих глубинам низов мантии, позволяет считать его одним из главных компонентов этой геосферы. Основанием для этого заключения послужили эксперименты, в ходе которых образцы Mg-перовскита MgSiO3 были подвергнуты давлению, в 1,3 млн раз превышающему атмосферное, и одновременно на образец, помещенный между алмазными наковальнями, воздействовали лазерным лучом с температурой около 2000 0С.
Таким образом, смоделированы условия, существующие на глубинах ~2800 км, то есть вблизи нижней границы нижней мантии. Оказалось, что ни во время, ни после эксперимента минерал не изменил свои структуру и состав. Таким образом, Л. Лиу, а также Е. Ниттл и Е. Жанлоз пришли к выводу, согласно которому стабильность Mg-перовскита позволяет рассматривать его как наиболее распространенный минерал на Земле, составляющий, по-видимому, почти половину ее массы.
Не меньшей устойчивостью отличается и вюстит FexO, состав которого в условиях нижней мантии характеризуется значением стехиометрического коэффициента х < 0,98, что означает одновременное присутствие в его составе Fe2+ и Fe3+. При этом, согласно экспериментальным данным, температура плавления вюстита на границе нижней мантии и слоя D", по данным Р. Болера (1996), оценивается в ~5000 K, что намного выше 3800 0С, предполагаемой для этого уровня (при средних температурах мантии ~2500 0С в основании нижней мантии допускается повышение температуры приблизительно на 1300 0С). Таким образом, вюстит должен сохраниться на этом рубеже в твердом состоянии, а признание фазового контраста между твердой нижней мантией и жидким внешним ядром требует более гибкого подхода и уж во всяком случае не означает четко очерченной границы между ними.
Следует отметить, что в преобладающих на больших глубинах перовскитоподобных фазах может содержаться весьма ограниченное количество Fe, а повышенные концентрации Fe среди минералов глубинной ассоциации характерны лишь для магнезиовюстита. При этом для магнезиовюстита доказана возможность перехода под воздействием высоких давлений части содержащегося в нем двухвалентного железа в трехвалентное, остающееся в структуре минерала, с одновременным выделением соответствующего количества нейтрального железа. На основе этих данных сотрудники геофизической лаборатории Иститута Карнеги Х. Мао, П. Белл и Т. Яги выдвинули новые идеи о дифференциации вещества в глубинах Земли. На первом этапе благодаря гравитационной неустойчивости магнезиовюстит погружается на глубину, где под воздействием давления из него выделяется некоторая часть железа в нейтральной форме. Остаточный магнезиовюстит, характеризующийся более низкой плотностью, поднимается в верхние слои, где вновь смешивается с перовскитоподобными фазами. Контакт с ними сопровождается восстановлением стехиометрии (то есть целочисленного отношения элементов в химической формуле) магнезиовюстита и приводит к возможности повторения описанного процесса. Новые данные позволяют несколько расширить набор вероятных для глубокой мантии химических элементов. Например, обоснованная Н. Росс (1997) устойчивость магнезита при давлениях, соответствующих глубинам ~900 км, указывает на возможное присутствие углерода в ее составе.
Выделение отдельных промежуточных сейсмических границ, расположенных ниже рубежа 670, коррелирует с данными о структурных трансформациях мантийных минералов, формы которых могут быть весьма разнообразными. Иллюстрацией изменения многих свойств различных кристаллов при высоких значениях физико-химических параметров, соответствующих глубинной мантии, может служить, согласно Р. Жанлозу и Р. Хейзену, зафиксированная в ходе экспериментов при давлениях 70 гигапаскалей (ГПа) (~1700 км) перестройка ионноковалентных связей вюстита в связи с металлическим типом межатомных взаимодействий. Рубеж 1200 может соответствовать предсказанной на основе теоретических квантово-механических расчетов и впоследствии смоделированной при давлении ~45 ГПа и температуре ~2000 0С перестройке SiO2 со структурой стишовита в структурный тип CaCl2 (ромбический аналог рутила TiO2), а 2000 км - его последующему преобразованию в фазу со структурой, промежуточной между a-PbO2 и ZrO2, характеризующуюся более плотной упаковкой кремнийкислородных октаэдров (данные Л.С. Дубровинского с соавторами). Также начиная с этих глубин (~2000 км) при давлениях 80-90 ГПа допускается распад перовскитоподобного MgSiO3, сопровождающийся возрастанием содержания периклаза MgO и свободного кремнезема. При несколько большем давлении (~96 ГПа) и температуре 800 0С установлено проявление политипии у FeO, связанное с образованием структурных фрагментов типа никелина NiAs, чередующихся с антиникелиновыми доменами, в которых атомы Fe расположены в позициях атомов As, а атомы О - в позициях атомов Ni. Вблизи границы D" происходит трансформация Al2O3 со структурой корунда в фазу со структурой Rh2O3, экспериментально смоделированная при давлениях ~100 ГПа, то есть на глубине ~2200-2300 км. использованием метода мессбауэровской спектроскопии при таком же давлении обоснован переход из высокоспинового (HS) в низкоспиновое состояние (LS) атомов Fe в структуре магнезиовюстита, то есть изменение их электронной структуры. В связи с этим следует подчеркнуть, что структура вюстита FeО при высоком давлении характеризуется нестехиометрией состава, дефектами атомной упаковки, политипией, а также изменением магнитного упорядочения, связанного с изменением электронной структуры (HS => LS - переход) атомов Fe. Отмеченные особенности позволяют рассматривать вюстит как один из наиболее сложных минералов с необычными свойствами, определяющими специфику обогащенных им глубинных зон Земли вблизи границы D".
Рис. 3. Тетрагональная структура Fe7S-возможного компонента внутреннего (твердого) ядра, по Д.М. Шерману (1997)
Сейсмологические измерения
указывают на то, что и внутреннее
(твердое) и внешнее (жидкое) ядра Земли
характеризуются меньшей
Можно прогнозировать, что новые данные о структурных изменениях минеральных фаз на больших глубинах позволят найти адекватную интерпретацию и другим важнейшим геофизическим границам, фиксируемым в недрах Земли. Общее заключение таково, что на таких глобальных сейсмических рубежах, как 410 и 670 км, происходят значительные изменения в минеральном составе мантийных пород. Минеральные преобразования отмечаются также и на глубинах ~850, 1200, 1700, 2000 и 2200-2300 км, то есть в пределах нижней мантии. Это весьма важное обстоятельство, позволяющее отказаться от представления об ее однородной структуре.
К 80-м годам XX века сейсмологические исследования методами продольных и поперечных сейсмических волн, способных проникать через весь объем Земли, а потому названных объемными в отличие от поверхностных, распределяющихся лишь по ее поверхности, оказались уже настолько существенными, что позволили составлять карты сейсмических аномалий для разных уровней планеты. Фундаментальные работы в этой области выполнены американским сейсмологом А. Дзевонски и его коллегами [5].
На рис. 4 приведены образцы подобных карт из серии, опубликованной в 1994 году, хотя первые публикации появились на 10 лет раньше. В работе [5] приведены 12 карт для глубинных срезов Земли в интервале от 50 до 2850 км, то есть практически охватывающих всю мантию. На этих интереснейших картах легко видеть, что сейсмическая картина на различных уровнях глубины разная. Это видно по площадям и контурам распространения сейсмоаномальных ареалов, особенностям переходов между ними и вообще по общему облику карт. Отдельные из них отличаются большой пестротой и контрастностью в распределении областей с различными скоростями сейсмических волн (рис. 5), тогда как на других видны более сглаженные и простые соотношения между ними.
В том же, 1994 году вышла в свет аналогичная работа японских геофизиков [6]. В ней приведены 14 карт для уровней от 78 до 2900 км. На обеих сериях карт ясно видна тихоокеанская неоднородность, которая хоть и меняется в очертаниях, но прослеживается вплоть до земного ядра. За пределами этой крупной неоднородности сейсмическая картина усложняется, значительно меняясь при переходе от одного уровня к другому. Но, сколь бы значительно ни было различие этих карт, между отдельными из них просматриваются черты сходства. Они выражаются в некотором подобии в размещении в пространстве положительных и отрицательных сейсмоаномалий и в конечном счете в общих особенностях глубинной сейсмоструктуры. Это позволяет группировать такие карты, что дает возможность выделять внутримантийные оболочки разного сейсмического облика. И такая работа была выполнена [7]. На основе анализа карт японских геофизиков оказалось возможным предложить существенно более дробную структуру мантии Земли, показанную на рис. 5, по сравнению с традиционной моделью земных оболочек.