Системный анализ

Автор работы: Пользователь скрыл имя, 13 Декабря 2013 в 14:39, реферат

Краткое описание

В XVIII веке объем знаний был таков, что ученые того времени могли знать несколько языков, проводить опыты по физике, химии, делали открытия в математике, а в дополнение к этому занимались поэзией. В настоящее же время, знания человека о природе разрослись до такой степени, что не представляется возможным охватить не только весь их объем, но даже и отдельные его области как математика, физика, биология и т.п. Ученые все глубже углубляются в изучение своих областей, часто не отдавая себе отчета о полезности этих знаний. С другой стороны, для современного ученого необходимо получение сведений из других отраслей науки. Появление таких дисциплин, как биофизика, физическая химия, биохимия, бионика, математическая лингвистика, требует сочетания сведений из различных областей.

Содержание

Введение 3
1. История возникновения общей теории систем 5
1.1. Основные понятия 5
1.2. Философские категории, используемые в системном анализе 8
1.3. Понятие системы 9
1.4. Понятие элемента 11
1.5. понятие окружающая среда 12
1.6. Понятие структура и организаця 12
2. Состояние и функционирование системы 15
2.1.Энтропия, неопределенность и информация 15
2.2. Обратная связь 15
3. Основные постулаты общей теории систем. 17
3.1. методы моделирования систем 17
3.2. Системный подход как методология проектирования 20
3.3. Системный подход как общая концептуальная основа 21
Заключение 26
Список литературы 28

Вложенные файлы: 1 файл

системный анализ.doc

— 160.00 Кб (Скачать файл)

Абстрактные и конкретные системы

По определению Акоффа и Эмери [5], система называется абстрактной, если ее элементы являются понятиями. Систему относят к конкретным, если по крайней мере два ее элемента являются объектами. Дж. ван Гиг дополняет эти определения, назвав систему конкретной, если ее элементы являются либо объектами, либо субъектами, либо и теми и другими. Это не лишает общности определение Акоффа. Все абстрактные системы являются неживыми, в то время как конкретные системы могут быть и живыми, и неживыми.

Открытые и замкнутые  системы

Деление систем на открытие и замкнутые является важным основанием классификации систем. Система является замкнутой, если у нее нет окружающей среды, т. е. внешних контактирующих с ней систем. К замкнутым относятся и те системы, на которые внешние системы не оказывают существенного влияния. Примером замкнутой системы может служить часовой механизм. Система называется открытой, если существуют другие, связанные с ней системы, которые оказывают на нее воздействие и на которые она тоже влияет. Различие между открытыми и замкнутыми системами является основным моментом в понимании фундаментальных принципов ОТС. Всякая попытка рассмотрения открытых систем как замкнутых, когда внешняя среда не принимается во внимание, таит в себе большую опасность, которую необходимо полностью осознать.

Все живые системы  -  открытые системы. Неживые системы являются относительно замкнутыми; наличие обратной связи наделяет их некоторыми неполными свойствами живых систем, связанными с состоянием равновесия.

1.4. Понятие  элемента

 

Элемент  - представляет собой далее не делимый компонент системы при данном способе расчленения.

При определении этого  понятия нет такого большого количества мнений, как в случае с понятием “система”. Все авторы дают сходные  определения, но при этом часто говорят, что элементы могут в свою очередь представлять собой системы, т. е. быть подсистемами. Даже более того, чаще всего так оно и бывает. Поэтому для системоаналитика при анализе организации (составлении модели) большого труда стоит разбить цельную систему на конечное число элементов, чтобы избежать излишней сложности и не потерять в адекватности модели.

Ван Гиг, классифицируя  элементы, делит их на живые и  неживые, входные и выходные. Различие между входными элементами и ресурсами очень незначительно и зависит лишь от точки зрения и условий. В процессе преобразования входные элементы  -  это те элементы, которые потребляют ресурсы. Определяя входные элементы и ресурсы систем, важно указать, контролируются ли они проектировщиком системы, т. е. следует их рассматривать как часть системы или как часть окружающей их среды (см. раздел ниже). При оценке эффективности системы входные элементы и ресурсы обычно относят к затратам. Выходные элементы представляют собой результат процесса преобразования в системе и рассматриваются как результаты, выходы или прибыль.

1.5. понятие  окружающая среда

 

Окружающую среду можно  в некоторой степени противопоставить (или сравнить) с элементом. Элемент  ограничивает систему “снизу”, т.е. определяет уровень детализации, ниже которого не стоит опускаться. Окружающая среда устанавливает внешние границы, что совершенно необходимо при изучении открытых систем  -  систем, взаимодействующих с другими системами. При анализе организаций, устанавливая границы, мы определяем, какие системы можно считать находящимися под контролем лица, принимающего решение, и какие остаются вне его влияния. Однако, как бы ни устанавливались границы системы, нельзя игнорировать ее взаимодействие с окружающей средой, ибо в этом случае принятые решения могут оказаться бессмысленными. 

1.6. Понятие  структура и организаця

 

Понятие структуры связано с упорядоченностью отношений, которые связывают элементы системы. “Чтобы получить велосипед, недостаточно получить “ящик” со всеми его деталями. Необходимо еще правильно соединить детали между собой”.

Перегудов и Тарасенко  определяют структуру системы как совокупность необходимых и достаточных для достижения цели отношений между элементами.

Акофф и Эмери говорят  о структуре как об очень общем понятии, включающем геометрические, кинематические, механические и морфологические аспекты.

Структура может быть простой или сложной в зависимости  от числа и типа взаимосвязей между  частями системы. В сложных системах должна существовать иерархия, т. е. упорядочение уровней подсистем, частей и элементов. От типа и упорядоченности взаимоотношений между компонентами системы в значительной степени зависят функции систем и эффективность их выполнения.

Организация является характеристикой  систем, которая не тождественна сложности структуры.

Акофф и Эмери определяют организацию как “по крайней  мере частично самоуправляемую систему”, наделенную следующими характеристиками.

Сущность. Организации являются системами типа “человек  -  машина”.

Структура. Система должна обладать способностью выбирать направления деятельности, ответственность за которую может быть распределена между элементами системы на основе их функций (торговля, производство, проведение расчетов и т. д.), местоположения или других признаков.

Коммуникация. Коммуникация играет важную роль в определении поведения и взаимодействия подсистем в организации.

Выбор решений. Участники должны распределить между собой задачи и соответствующие направления деятельности.

Ван Гиг называет организации системами  более высокого порядка, чем остальные живые системы, поскольку они отличаются большей сложностью и сознательно движутся в направлении выбранной ими цели. Системы низкого уровня организации имеют меньшую сложность и их цели определяются внешней средой или другими системами.

Общая теория систем провела грань (и это является ее заслугой) между  теорией неживых систем, к которым  применим механистический подход, и  теорией живых систем, для которых  требуется нечто другое.

Модель -  некий объект-заместитель, который в определенных условиях может заменять объект-оригинал, воспроизводя интересующие нас свойства и характеристики оригинала, причем имеет существенные преимущества удобства. Модель можно также определить как способ существования знаний.

В результате деятельности математиков, логиков и философов была создана теория моделей. Согласно ей модель - это результат отображения одной абстрактной материальной структуры на другую, также абстрактную, либо результат интерпретации первой модели в терминах и образах второй.

Модели могут быть качественно  различными, они образуют иерархию, в которой модель более высокого уровня (например, теория) содержит модели нижних уровней (скажем, гипотезы) как  свои части, элементы.

Целесообразная деятельность невозможна без моделирования. Сама цель уже есть модель желаемого состояния. И алгоритм деятельности - также модель этой деятельности, которую еще предстоит реализовать.

 

2. Состояние и функционирование системы

2.1.Энтропия, неопределенность и информация

 

Энтропией называется степень неупорядоченности. В термодинамике, откуда заимствовано это понятие, энтропия связывается с вероятностью возникновения определенного расположения молекул. В кибернетике и ОТС энтропия означает величину разнообразия системы, где под разнообразием понимается степень неопределенности, возникающей при выборе из большого числа всевозможных вариантов. Для уменьшения энтропии необходимо уменьшить существующую неопределенность, что обеспечивается путем получения информации. Понятия энтропии и количества информации можно использовать для того, чтобы дать характеристику живым и неживым системам. Неживые системы (рассматриваемые обычно как замкнутые) имеют тенденцию развиваться по направлению к состоянию максимальной неупорядоченности и энтропии. Отличительной чертой живых (а значит, открытых) систем является их сопротивляемость процессу разупорядочения и их развитие по направлению к состояниям более высокой организации. Общая теория систем объясняет эти тенденции, основываясь на следующих фактах:

  • обработка информации приводит к соответствующему уменьшению положительной энтропии;
  • получение энергии из внешней среды (увеличение отрицательной энтропии) противодействует ослабевающим тенденциям неотвратимого естественного процесса (увеличению положительной энтропии).

 

 

2.2. Обратная связь

 

Управляющий механизм любой  системы, будь это рулевое управление автомобиля, или социо-техническая  система, основан на принципе подачи выходного сигнала обратно на вход. Существует положительная и отрицательная обратная связь. Положительная обратная связь обычно приводит к неустойчивым состояниям системы, тогда как отрицательная обратная связь позволяет обеспечить устойчивое управление системой.

Обратная связь является основой саморегулирования, развития систем, приспособления их к изменяющимся условиям

существования.

При разработке моделей  функционирования сложных саморегулирующихся, самоорганизующихся систем в них, как

правило, одновременно присутствуют и отрицательные, и положительные  обратные связи. На использовании этих понятий

базируется, в частности, имитационное динамическое моделирование.

Единственное назначение подсистем обратной связи – изменение  идущего процесса.

Обратная связь может  быть:

  • объектом отдельного процесса подсистемы;
  • объектом интегрированного процесса подсистемы;
  • распределённым по времени объектом, возвращающим выход подсистемы с высшим приоритетом (более поздний по времени) для сравнения с критерием подсистемы низшего приоритета (более раннего по времени).

Приведенный выше набор  определений является базовым для общей теории систем. Без оперирования этими понятиями невозможно ни структурирование научного знания, ни анализ организаций. На определении этих понятий останавливается большинство авторов. 

 

3. Основные постулаты общей теории систем.

3.1. методы моделирования систем

 

Развитие ОТС было вызвано необходимостью дополнить  концептуальные схемы, известные под  названием аналитико-механистического подхода и связанные с науками о неживой природе. Определение “механистический” используется, по-видимому, потому, что в них господствующими были законы механики Ньютона. Их называют, кроме того, “аналитическими”, так как они основаны на принципах анализа: от целого к частям и от более сложного к более простому. Схемы являются также дедуктивными, т. е. используется переход от общего к частному.

С помощью таких подходов можно правильно объяснить явления, связанные с системами неживой  природы. Однако для исследования систем в биологии, бихевиоризме, социологии они не подходят.

Аналитико-механистическим  подходам свойственны следующие недостатки:

Они не могут дать объяснения сущности таких понятий, кик организация, самосохранение, регулирование, характеризующих  живые системы.

Аналитический метод  непригоден для изучения систем, которые  должны рассматриваться неделимыми: существование неделимых целых делает разложение на составные части бессмысленным или невозможным. Важным предположением аналитико-механистического подхода является тот факт, что свойства всей системы не могут быть выведены из свойств ее частей.

Механистические теории были построены не для изучения сложных организованных систем со сложными структурами и сильными взаимосвязями, а с другой целью.

Системный подход  -  это принцип исследования, при котором рассматривается система в целом, а не ее отдельные подсистемы. Его задачей является оптимизация системы в целом, а не улучшение эффективности входящих в нее подсистем.

Цель ОТС заключается  в построении концептуальной и диалектической основы для развития методов, пригодных  для исследования более широкого класса систем, чем те, которые связаны с неживой природой. Общая теория систем лишена отмеченных выше недостатков и обладает следующими достоинствами:

Использует “целостный”  подход к системам (в соответствии с которым все явления рассматриваются  как “целостности”) при сохранении идентичности систем и свойств неделимых элементов.

Повышает общность частных  законов посредством нахождения подобных структур в системах (изоморфизм) независимо от того, к каким дисциплинам  и специальным наукам относятся  эти законы.

Побуждает к использованию математических моделей, которые описаны с помощью языка, не зависимого от конкретного смысла; эти модели благодаря свойственной им общности помогают установить аналогию (или ее отсутствие) между системами. С помощью математических моделей мы переходим “от анализа содержания к анализу структуры”, что “позволяет избежать многих ненужных исследований”. Недостаток такого подхода заключается в том, что реальные системы не полностью поддаются описанию с помощью математических моделей.

Способствует единству науки, являясь “связующей основой для систематики знаний”. Общую теорию систем можно рассматривать как “систему систем”, указывающую на расхождение и на сходство между различными дисциплинами .

Информация о работе Системный анализ