Автор работы: Пользователь скрыл имя, 10 Декабря 2014 в 04:25, курсовая работа
Для анализа свойств баз данных предлагается выделять характеристики качества системы управления базой данных и содержащейся в ней информации. Состав этих характеристик рекомендуется систематизировать на основе требований международного стандарта ISO 9126.
Современные базы данных — один из тех объектов в сфере информатизации, от которых иногда требуется особенно высокое качество и наличие возможности его оценки.
Введение
Глава 1. Понятие, состав информационной системы
1.1 Виды структур данных
1.2 Виды баз данных
1.3 Реляционные базы данных
Глава 2. Системы управления базами данных (СУБД)
2.1 Основные функции СУБД
2.2 Классификация СУБД
2.3 Механизмы доступа
2.4 Что такое sql?
Глава 3. Анализ качества баз данных
3.1 О надежности в терминах ISO 9126
Глава 4. Тенденции в мире систем управления базами данных
Заключение
Список используемой литературы
По определению БД называется активной, если СУБД по отношению к ней выполняет не только те действия, которые явно указывает пользователь, но и дополнительные действия в соответствии с правилами, заложенными в саму БД.
Легко видеть, что основа этой идеи содержалась в языке SQL времени System R. На самом деле, что есть определение триггера или условного воздействия как не введение в БД правила, в соответствии с которым СУБД должна производить дополнительные действия? Плохо лишь то, что на самом деле триггеры не были полностью реализованы ни в одной из известных систем, даже и в System R. И это не случайно, потому что реализация такого аппарата в СУБД очень сложна, накладна и не полностью понятна.
По определению, дедуктивная БД состоит из двух частей: экстенсиональной, содержащей факты, и интенсиональной, содержащей правила для логического вывода новых фактов на основе экстенсиональной части и запроса пользователя.
Легко видеть, что при таком общем определении SQL-ориентированную реляционную СУБД можно отнести к дедуктивным системам. Действительно, что есть определенные в схеме реляционной БД представления как не интенсиональная часть БД.
Основным отличием реальной дедуктивной СУБД от реляционной является то, что и правила интенсиональной части БД, и запросы пользователей могут содержать рекурсию. Именно возможность рекурсии делает реализацию дедуктивной СУБД очень сложной и во многих случаях эффективно неразрешимой проблемой.
Обычно языки запросов и определения интенсиональной части БД являются логическими (поэтому дедуктивные БД часто называют логическими). Имеется прямая связь дедуктивных БД с базами знаний (интенсиональную часть БД можно рассматривать как БЗ). Более того, трудно провести грань между этими двумя сущностями; по крайней мере, общего мнения по этому поводу не существует.
Какова же связь дедуктивных БД с реляционными СУБД, кроме того, что реляционная БД является вырожденным частным случаем дедуктивной? Основным является то, что для реализации дедуктивной СУБД обычно применяется реляционная система. Такая система выступает в роли хранителя фактов и исполнителя запросов, поступающих с уровня дедуктивной СУБД. Между прочим, такое использование реляционных СУБД резко актуализирует задачу глобальной оптимизации запросов.
При обычном применении реляционной СУБД запросы обычно поступают на обработку по одному, поэтому нет повода для их глобальной (межзапросной) оптимизации. Дедуктивная же СУБД при выполнении одного запроса пользователя в общем случае генерирует пакет запросов к реляционной СУБД, которые могут оптимизироваться совместно.
Конечно, в случае, когда набор правил дедуктивной БД становится велик, и их невозможно разместить в оперативной памяти, возникает проблема управления их хранением и доступом к ним во внешней памяти. Здесь опять же может быть применена реляционная система, но уже не слишком эффективно. Требуются более сложные структуры данных и другие условия выборки. Известны частные попытки решить эту проблему, но общего решения пока нет.
Обычные БД хранят мгновенный снимок модели предметной области. Любое изменение в момент времени t некоторого объекта приводит к недоступности состояния этого объекта в предыдущий момент времени. Самое интересное, что на самом деле в большинстве развитых СУБД предыдущее состояние объекта сохраняется в журнале изменений, но возможности доступа со стороны пользователя нет.
Конечно,
можно явно ввести в хранимые отношения
явный временной атрибут и поддерживать
его значения на уровне приложений. Более
того, в большинстве случаев так и поступают.
Недаром в стандарте SQL появились специальные
типы данных date и time. Но в таком подходе
имеются несколько недостатков: СУБД не
знает семантики временного поля отношения
и не может контролировать корректность
его значений; появляется дополнительная
избыточность хранения (предыдущее состояние
объекта данных хранится и в основной
БД, и в журнале изменений); языки запросов
реляционных СУБД не приспособлены для
работы со временем.
Существует отдельное направление исследований
и разработок в области темпоральных БД.
В этой области исследуются вопросы моделирования
данных, языки запросов, организация данных
во внешней памяти и т.д. Основной тезис
темпоральных систем состоит в том, что
для любого объекта данных, созданного
в момент времени t1 и уничтоженного в момент
времени t 2, в БД сохраняются (и доступны
пользователям) все его состояния во временном
интервале [t1,t2].
Исследования и построения прототипов темпоральных СУБД обычно выполняются на основе некоторой реляционной СУБД. Как и в случае дедуктивных БД темпоральная СУБД - это надстройка над реляционной системой. Конечно, это не лучший способ реализации с точки зрения эффективности, но он прост и позволяет производить достаточно глубокие исследования.
Примером кардинального (но может быть, преждевременного) решения проблемы темпоральных БД может служить СУБД Postgres. Эта система была разработана М. Стоунбрекера для исследований и обучения студентов в университете г Беркли, и он смело шел в ней на самые смелые эксперименты.
Главными особенностями системы управления памятью в Postgres является, во-первых, то, что в ней не ведется обычная журнализация изменений базы данных и мгновенно обеспечивается корректное состояние базы данных после перевызова системы с утратой состояния оперативной памяти. Во-вторых, система управления памятью поддерживает исторические данные. Запросы могут содержать временные характеристики интересующих объектов. Реализационно эти два аспекта связаны.
Основное решение состоит в том, что при модификациях кортежа изменения производятся не на месте его хранения, а заводится новая запись, куда помещаются измененные поля. Эта запись содержит, кроме того, данные, характеризующие транзакцию, производившую изменения (в том числе и время ее завершения), и подшивается в список к изменявшемуся кортежу. В системе поддерживается уникальная идентификация транзакций и имеется специальная таблица транзакций, хранящаяся в стабильной памяти. Таким образом, после сбоев просто не следует обращать внимание на хвостовые записи списков, относящиеся к незакончившимся транзакциям. Синхронизация поддерживается на основе обычного двухфазного протокола захватов.
Отдельный компонент системы осуществляет архивизацию объектов базы данных. Он производит сборку разросшихся списков изменявшихся кортежей и записывает их в область архивного хранения. К этой области тоже могут адресоваться запросы, но уже только на чтение.
Система была ориентирована на использование оптических дисков с разовой записью и стабильной оперативной памяти (хотя бы небольшого объема). При наличии таких технических средств она выигрывает по эффективности даже при работе в традиционном режиме, по сравнению со схемой с журнализацией. Однако, возможна работа и на традиционной аппаратуре, тогда эффективность системы слегка уступает традиционным схемам.
Соответствующие возможности работы с историческими данными заложены в язык Postquel (и в этом его главное отличие от последних вариантов Quel). Возможна выборка информации, хранившейся в базе данных в указанное время, в указанном временном интервале и т.д. Кроме того, имеется возможность создавать версии отношений, и допускается их последующая модификация с учетом изменений основных вариантов.
Направление интегрированных или федеративных систем неоднородных БД и мульти-БД появилось в связи с необходимостью комплексирования систем БД, основанных на разных моделях данных и управляемых разными СУБД.
Основной задачей интеграции неоднородных БД является предоставление пользователям интегрированной системы глобальной схемы БД, представленной в некоторой модели данных, и автоматическое преобразование операторов манипулирования БД глобального уровня в операторы, понятные соответствующим локальным СУБД. В теоретическом плане проблемы преобразования решены, имеются реализации.
При строгой интеграции неоднородных БД локальные системы БД утрачивают свою автономность. После включения локальной БД в федеративную систему все дальнейшие действия с ней, включая администрирование, должны вестись на глобальном уровне. Поскольку пользователи часто не соглашаются утрачивать локальную автономность, желая тем не менее иметь возможность работать со всеми локальными СУБД на одном языке и формулировать запросы с одновременным указанием разных локальных БД, развивается направление мульти-БД. В системах мульти-БД не поддерживается глобальная схема интегрированной БД и применяются специальные способы именования для доступа к объектам локальных БД. Как правило, в таких системах на глобальном уровне допускается только выборка данных. Это позволяет сохранить автономность локальных БД.
Как правило, интегрировать приходится неоднородные БД, распределенные в вычислительной сети. Это в значительной степени усложняет реализацию. Дополнительно к собственным проблемам интеграции приходится решать все проблемы, присущие распределенным СУБД: управление глобальными транзакциями, сетевую оптимизацию запросов и т.д. Очень трудно добиться эффективности.
Как правило, для внешнего представления интегрированных и мульти-БД используется (иногда расширенная) реляционная модель данных. В последнее время все чаще предлагается использовать объектно-ориентированные модели, но на практике пока основой является реляционная модель. Поэтому, в частности, включение в интегрированную систему локальной реляционной СУБД существенно проще и эффективнее, чем включение СУБД, основанной на другой модели данных.
В теоретическом плане распределенные СУБД составляют еще одно измерение в пространстве исследований и разработок систем управления базами данных. В этих системах приходится решать все задачи, свойственные централизованным СУБД, но, как правило, в более сложных постановках. Кроме того, в распределенных системах возникают и специфические проблемы, от решения которых во многом зависит эффективность, надежность и доступность систем БД. В настоящее время большинство распределенных СУБД базируется на реляционной модели данных и рассчитано на использование в локальных сетях ЭВМ. Многие проблемы распространяются и на распределенные СУБД в территориально разнесенных сетях, и почти все проблемы сохраняются для распределенных СУБД, основанных на других моделях данных.
В централизованных системах БД очень распространено использование двухфазного протокола синхронизационных захватов объектов БД. В соответствии с этим протоколом объект БД автоматически захватывается транзакцией в соответствующем режиме при первом обращении, и все захваты данной транзакции освобождаются только при ее завершении. В случае возникновения конфликта по синхронизации транзакция блокируется, пока объект не будет освобожден. Следование этому протоколу может привести к возникновению синхронизационного тупика между двумя или более транзакциями. Задача СУБД - распознать появление тупика и разрушить его путем отката одной или нескольких транзакций.
Распознавание тупиков сводится к обнаружению циклов в графе ожидания транзакций, что является трудоемкой задачей даже в централизованных СУБД. В распределенных системах решение этой задачи может потребовать неприемлемых накладных расходов (хотя поиски алгоритмов с допустимыми затратами продолжаются).
Поэтому более часто в распределенных системах применяются протоколы синхронизации, основанные на временных метках. Это направление само по себе очень широко, имеются разные варианты и даже комбинации с протоколом двухфазных захватов, но основной проблемой реализации является отсутствие в распределенной системе единого времени.
В истинно распределенной СУБД транзакции естественно утрачивают линейную структуру. Распределенная транзакция в общем случае представляет собой дерево, промежуточными узлами которого являются распределенные подтранзакции, а листья соответствуют обычным линейным транзакциям локальных СУБД.
Основной проблемой управления транзакциями в этом случае является корректное завершение (фиксация) распределенной транзакции. Классическим решением является использование давно известного протокола двухфазной фиксации. Однако прямое использование этого протокола порождает значительное число служебных сообщений между составляющими распределенную систему локальными СУБД. Большое число исследований посвящено поискам более экономичных протоколов.
Основным накладным расходом при выполнении распределенного запроса является пересылка данных между узлами сети. Одним из способов сокращения этого накладного расхода является поддержание копий наиболее часто используемых данных в нескольких узлах сети с учетом порождаемых этим дополнительных накладных расходов по поддержанию согласованности копий при модификации данных.
Другим основанием для поддержания копий является увеличение уровня доступности данных при выходе из строя узлов сети или коммуникационных линий, вследствие чего утрачивается связность сети. Теоретически доступ к некоторому объекту БД может продолжаться в любом разделе сети, содержащем его копию. Однако приходится решать ту же проблему согласования копий при изменениях объекта данных. Существует масса подходов к решению этой проблемы, от полного разрешения любого доступа к любой копии объекта во всех разделах сети с проведением сложной процедуры согласования копий после восстановления связности сети, до разрешения модификации объекта только в одном разделе. Для обнаружения этого раздела обычно применяются различные варианты алгоритма голосования.
Альтернативный подход, обеспечивающий максимальное распараллеливание выполнения запроса к БД, состоит в том, что отношение (если говорить в терминах реляционной модели данных) разбивается на ряд вертикальных или горизонтальных фрагментов, и эти фрагменты хранятся в разных узлах сети.
Информация о работе Базы данных и системы управления базами данных