Автор работы: Пользователь скрыл имя, 21 Января 2013 в 17:41, реферат
На сегодняшний день проблема исследования AI занимает актуальное место в системе информационных наук. В своем реферате я попытаюсь рассмотреть проблемы создания и воплощения искусственного интеллекта в жизнь, также освещу историю создания и наиболее перспективные разработки в этой области.
ВВЕДЕНИЕ 3
1. ИСТОРИЯ РАЗВИТИЯ AI 5
2. ПЕРСПЕКТИВЫ И ТЕНДЕНЦИИ РАЗВИТИЯ AI 14
2.1 Нейронные сети 15
2.2 Эволюционные вычисления 15
2.3 Нечеткая логика 16
2.4 Обработка изображений 17
2.5 Экспертные системы 17
2.6 Интеллектуальные приложения 18
2.7 Распределенные вычисления 18
2.8 ОС РВ 18
2.9 Интеллектуальная инженерия 19
2.10 Самоорганизующиеся СУБД 19
2.11 AI для анализаторских функций 20
2.12 Военные технологии 20
3. ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, КАК НАПРАВЛЕНИЕ ИССЛЕДОВАНИЙ 23
3.1 Аспекты представления знаний 30
3.2 Рефлексия 33
3.3 Некоторые подходы к решению проблемы ИИ 36
ЗАКЛЮЧЕНИЕ 40
Федеральное Государственное образовательное бюджетное
учреждение высшего профессионального образования
«Воронежская государственная лесотехническая академия»
Кафедра вычислительной техники и информационных систем
Доклад по дисциплине: «Представление знаний»
На тему: «История и тенденции развития искусственного интеллекта»
Журихина А.А.
Воронеж 2012
Введение 3
1. История развития AI 5
2. Перспективы и тенденции развития AI 14
2.1 Нейронные сети 15
2.2 Эволюционные вычисления 15
2.3 Нечеткая логика 16
2.4 Обработка изображений 17
2.5 Экспертные системы 17
2.6 Интеллектуальные приложения 18
2.7 Распределенные вычисления 18
2.8 ОС РВ 18
2.9 Интеллектуальная инженерия 19
2.10 Самоорганизующиеся СУБД 19
2.11 AI для анализаторских функций 20
2.12 Военные технологии 20
3. Искусственный интеллект, как направление исследований 23
3.1 Аспекты представления знаний 30
3.2 Рефлексия 33
3.3 Некоторые подходы к решению проблемы ИИ 36
Заключение 40
Литература 42
Способна ли машина мыслить? Может ли машина иметь сознанные мысли в таком же смысле, в каком имеем их мы? Если под машиной понимать физическую систему, способную выполнять определенные функции (а что еще под ней можно понимать?), тогда люди -- это машины особой, биологической разновидности, а люди могут мыслить, и, стало быть, машины, конечно, тоже могут мыслить. Тогда, по всей видимости, можно создавать мыслящие машины из самых разнообразных материалов -- скажем, из кремниевых кристаллов или электронных ламп. Если это и окажется невозможным, то пока мы, конечно, этого еще не знаем. Однако в последние десятилетия вопрос о том, может ли машина мыслить, приобрел совершенно другую интерпретацию. Он был подменен вопросом: способна ли машина мыслить только за счет выполнения заложенной в нее компьютерной программы? Является ли программа основой мышления? Это принципиально иной вопрос, потому что он не затрагивает физических, каузальных (причинных) свойств существующих или возможных физических систем, а скорее относится к абстрактным, вычислительным свойствам формализованных компьютерных программ, которые могут быть реализованы в любом материале, лишь бы он был способен выполнять эти программы. Довольно большое число специалистов по искусственному интеллекту (ИИ) полагают, что на второй вопрос следует ответить положительно; другими словами, они считают, что составив правильные программы с правильными входами и выходами, они действительно создадут разум. Более того, они полагают, что имеют в своем распоряжении научный тест, с помощью которого можно судить об успехе или неудаче такой попытки. На сегодняшний день проблема исследования AI занимает актуальное место в системе информационных наук. В своем реферате я попытаюсь рассмотреть проблемы создания и воплощения искусственного интеллекта в жизнь, также освещу историю создания и наиболее перспективные разработки в этой области.
Как и любая основополагающая наука "Искусственный интеллект" имеет достаточно богатую историю. Можно выделить как теоретическую, так и экспериментальную части. Суть науки "Искусственный интеллект" лучше всего отражают слова "Дух в машине", при этом не столь важно развитие отдельно понятий о машине и духе, как важно их сочетание. Но в то же время понятно, что чем более развиты представления о машине, чем они более совершенны с одной стороны, и чем мы более знаем о духе с другой стороны - тем о более скажем так мощном ИИ мы можем говорить. Но отличает науку "Искусственный интеллект" от Вычислительной техники (Информатики) с одной стороны и от Медицины (Биологии) с другой - это именно связь одного с другим. И только при наличии этой связи мы можем говорить о достижениях в области ИИ, а не отдельно в областях Информатики или Биологии. Этому вопросу уделяется особенно большое значение в теоретической части, а для подтверждения теорий как и в других науках используется эксперимент. Но исторически появление теорий и первых экспериментов всегда разнесено во времени. Поэтому начала теории обычно относят к философии искусственного интеллекта, и только с появлением первых экспериментов теория приобретает самостоятельное значение. Причем саму теорию "Искусственного интеллекта", которая сейчас находится на рубеже с философией, не нужно совмещать с теорией математических, алгоритмических, робототехнических, физиологических и прочих методов, которые имеют собственное значение в соответствующих науках. Сейчас четкого различия между рядом связанных наук и собственно "Искусственным интеллектом" найти очень сложно, а тем более различить теоретические и экспериментальный разделы науки. И здесь главную помощь может оказать история становления и развития науки "Искусственный интеллект".
Исторически сложились три основных направления в моделировании ИИ.
В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д.
Второй подход в качестве объекта исследования рассматривает ИИ. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.
Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.
Самыми первыми интеллектуальными задачами, которые стали решаться при помощи ЭВМ были логические игры (шашки, шахматы), доказательство теорем. Хотя, правда здесь надо отметить еще кибернетические игрушки типа "электронной мыши" Клода Шеннона, которая управлялась сложной релейной схемой. Эта мышка могла "исследовать" лабиринт, и находить выход из него. А кроме того, помещенная в уже известный ей лабиринт, она не искала выход, а сразу же, не заглядывая в тупиковые ходы, выходила из лабиринта.
Американский кибернетик А. Самуэль составил для вычислительной машины программу, которая позволяет ей играть в шашки, причем в ходе игры машина обучается или, по крайней мере, создает впечатление, что обучается, улучшая свою игру на основе накопленного опыта. В 1962 г. эта программа сразилась с Р. Нили, сильнейшим шашистом в США и победила.
Каким образом машине удалось достичь столь высокого класса игры?
Естественно, что в машину были программно заложены правила игры так, что выбор очередного хода был подчинен этим правилам. На каждой стадии игры машина выбирала очередной ход из множества возможных ходов согласно некоторому критерию качества игры. В шашках (как и в шахматах) обычно невыгодно терять свои фигуры, и, напротив, выгодно брать фигуры противника. Игрок (будь он человек или машина), который сохраняет подвижность своих фигур и право выбора ходов и в то же время держит под боем большое число полей на доске, обычно играет лучше своего противника, не придающего значения этим элементам игры. Описанные критерии хорошей игры сохраняют свою силу на протяжении всей игры, но есть и другие критерии, которые относятся к отдельным ее стадиям -- дебюту, миттэндшпилю, эндшпилю.
Разумно сочетая такие критерии (например в виде линейной комбинации с экспериментально подбираемыми коэффициентами или более сложным образом), можно для оценки очередного хода машины получить некоторый числовой показатель эффективности -- оценочную функцию. Тогда машина, сравнив между собой показатели эффективности очередных ходов, выберет ход, соответствующий наибольшему показателю. Подобная автоматизация выбора очередного хода не обязательно обеспечивает оптимальный выбор, но все же это какой-то выбор, и на его основе машина может продолжать игру, совершенствуя свою стратегию (образ действия) в процессе обучения на прошлом опыте. Формально обучение состоит в подстройке параметров (коэффициентов) оценочной функции на основе анализа проведенных ходов и игр с учетом их исхода.
По мнению А. Самуэля, машина, использующая этот вид обучения, может научиться играть лучше, чем средний игрок, за относительно короткий период времени.
Можно сказать, что все эти элементы интеллекта, продемонстрированные машиной в процессе игры в шашки, сообщены ей автором программы. Отчасти это так. Но не следует забывать, что программа эта не является "жесткой", заранее продуманной во всех деталях. Она совершенствует свою стратегию игры в процессе самообучения. И хотя процесс "мышления" у машины существенно отличен оттого, что происходит в мозгу играющего в шашки человека, она способна у него выиграть.
Ярким примером сложной интеллектуальной игры до недавнего времени являлись шахматы. В 1974 г. состоялся международный шахматный турнир машин, снабженных соответствующими программами. Как известно, победу на этом турнире одержала советская машина с шахматной программой "Каисса".
Почему здесь употреблено "до недавнего времени"? Дело в том, что недавние события показали, что несмотря на довольно большую сложность шахмат, и невозможность, в связи с этим произвести полный перебор ходов, возможность перебора их на большую глубину, чем обычно, очень увеличивает шансы на победу. К примеру, по сообщениям в печати, компьютер фирмы IBM, победивший Каспарова, имел 256 процессоров, каждый из которых имел 4 Гб дисковой памяти и 128 Мб оперативной. Весь этот комплекс мог просчитывать более 100'000'000 ходов в секунду. До недавнего времени редкостью был компьютер, могущий делать такое количество целочисленных операций в секунду, а здесь мы говорим о ходах, которые должны быть сгенерированы и для которых просчитаны оценочные функции. Хотя с другой стороны, этот пример говорит о могуществе и универсальности переборных алгоритмов.
В настоящее время существуют и успешно применяются программы, позволяющие машинам играть в деловые или военные игры, имеющие большое прикладное значение. Здесь также чрезвычайно важно придать программам присущие человеку способность к обучению и адаптации. Одной из наиболее интересных интеллектуальных задач, также имеющей огромное прикладное значение, является задача обучения распознавания образов и ситуаций. Решением ее занимались и продолжают заниматься представители различных наук -- физиологи, психологи, математики, инженеры. Такой интерес к задаче стимулировался фантастическими перспективами широкого практического использования результатов теоретических исследований: читающие автоматы, системы ИИ, ставящие медицинские диагнозы, п роводящие криминалистическую экспертизу и т. п., а также роботы, способные распознавать и анализировать сложные сенсорные ситуации.
В 1957 г. американский физиолог Ф. Розенблатт предложил модель зрительного восприятия и распознавания -- перцептрон. Появление машины, способной обучаться понятиям и распознавать предъявляемые объекты, оказалось чрезвычайно интересным н е только физиологам, но и представителям других областей знания и породило большой поток теоретических и экспериментальных исследований.
Перцептрон или любая программа, имитирующая процесс распознавания, работают в двух режимах: в режиме обучения и в режиме распознавания. В режиме обучения некто (человек, машина, робот или природа), играющий роль учителя, предъявляет машине объекты и о каждом их них сообщает, к какому понятию (классу) он принадлежит. По этим данным строится решающее правило, являющееся, по существу, формальным описанием понятий. В режиме распознавания машине предъявляются новые объекты (вообще говоря, отличные от ранее предъявленных), и она должна их классифицировать, по возможности, правильно.
Проблема обучения распознаванию тесно связана с другой интеллектуальной задачей -- проблемой перевода с одного языка на другой, а также обучения машины языку. При достаточно формальной обработке и классификации основных грамматических правил и приемов пользования словарем можно создать вполне удовлетворительный алгоритм для перевода, скажем научного или делового текста. Для некоторых языков такие системы были созданы еще в конце 60-г. Однако для того, чтобы связно перевести достаточно большой разговорный текст, необходимо понимать его смысл. Работы над такими программами ведутся уже давно, но до полного успеха еще далеко. Имеются также программы, обеспечивающие диалог между человеком и машиной на урезанном естественном языке.
Что же касается моделирования логического мышления, то хорошей модельной задачей здесь может служить задача автоматизации доказательства теорем. Начиная с 1960 г., был разработан ряд программ, способных находить доказательства теорем в исчислении предикатов первого порядка. Эти программы обладают, по словам американского специалиста в области ИИ Дж. Маккатти, "здравым смыслом", т. е. способностью делать дедуктивные заключения.
В программе К. Грина и др., реализующей вопросно-ответную систему, знания записываются на языке логики предикатов в виде набора аксиом, а вопросы, задаваемые машине, формулируются как подлежащие доказательству теоремы. Большой интерес представляет "интеллектуальная" программа американского математика Хао Ванга. Эта программа за 3 минуты работы IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8.5 мин выдала доказательства еще 130 более сложных теорем, часть их которых еще не была выведена математиками. Правда, до сих пор ни одна программа не вывела и не доказала ни одной теоремы, которая бы, что называется "позарез" была бы нужна математикам и была бы принципиально новой.
Информация о работе История и тенденции развития искусственного интеллекта