Карманные персональные компьютеры

Автор работы: Пользователь скрыл имя, 17 Мая 2014 в 14:45, курсовая работа

Краткое описание

Вопросы, связанные с карманными компьютерами, смартфонами и коммуникаторами, сегодня становятся актуальными, особенно в связи с активным развитием этого сегмента рынка и стремительным ростом популярности разнообразных сверхпортативных устройств. До сих пор мы их не затрагивали, поэтому в обзоре сочли возможным привести не только техническую информацию, но и сделать ряд отступлений, которые, с нашей точки зрения, необходимы, чтобы не только констатировать особенности сложившейся на данный момент в этом секторе ситуации, но и лучше понять тенденции его развития.

Содержание

Карманные ПК 1
КПК: диспозиция 1
КПК: что почем 3
Технические характеристики 4
КПК изнутри 5
Ростки унификации 6
ARM как общий знаменатель 7
ARM: генезис 7
ARM: эволюция 8
ARM inside 10
Intel PCA 11
Intel XScale 14
Texas Instruments OMAP 18
Samsung S3C2400 24
КПК: на пути к мобильному 3D 25
NVIDIA GoForce 25
ATI Imageon 27
Intel 2700G 28

Вложенные файлы: 1 файл

Karmannye_personalnye_kompyutery.docx

— 104.16 Кб (Скачать файл)

Компания Intel — один из главных участников рынка в секторе ЦП для карманных ПК. Но именно «один из», здесь у нее есть сильные соперники, с которыми приходится бороться не только маркетинговыми, но и технологическими приемами.

В данный момент у Intel имеется три серии микросхем для карманных ПК (одна — для мобильных телефонов) и ряд дополнительных системных решений. История мобильных разработок Intel XScale, в общем, началась с покупки процессорного бизнеса компании Digital Equipment, создавшей микропроцессор StrongARM. Он несколько отличался от существовавших тогда реализаций. Главная задача, которую ставили перед собой разработчики этого ЦП, — создание быстродействующего ЦП с минимальными требованиями к питанию. Позднее, после покупки Intel микропроцессорного подразделения DEC, этот процессор выпускала компания Intel. Она довольно долго не обращала внимания на эту процессорную серию (во многом покупка была обусловлена возможностью разрешить ряд патентных коллизий, а вовсе не интересом к наработкам соперника; тем более что Intel на тот момент акцентировала внимание на RISC-ЦП других серий, таких, как i860 и i960).

Тем не менее Intel наладила производство StrongARM SA-1110 и разработала несколько его модификаций. ЦП (строго говоря, это была высокоинтегрированная СБИС) StrongARM был основан на архитектуре ARMv4, имел трехступенчатый конвейер, 32-разрядную адресацию, аппаратную поддержку виртуальной памяти (двухуровневая таблица страниц), 32-Кбайт кэши команд и данных, 32-Кбайт буфер и был несовместим с режимом Thumb. StrongARM мог функционировать при частота^ 133, а позднее 206 МГц (до того нормой считалось 33—66 МГц).

Intel выпустила также микросхему сопровождения SA-1111, содержавшую контроллер USB, управления питанием, некоторую периферию. Эта микросхема также может быть использована с процессорами серии РХА25х.

Именно на StrongARM был построен первый КПК с  Windows   СЕ,   использующий   ЦП   с   архитектурой ARM — Compaq iPAQ. StrongARM SA-1110 потреблял 0,25 Вт при высокой (большей, чем у ЦП SH3 и MIPS, также применявшихся в КПК с Windows СЕ) производительности. Спустя некоторое время, в немалой степени благодаря успеху и популярности iPAQ, архитектура ARM стала стандартом де-факто в мире КПК, и с анонсом платформы Windows Powered Pocket PC 2000 Microsoft только закрепила это положение и де-юре. Обретя гарантированный рынок сбыта, Intel занялась совершенствованием серии, переименовав ее в XScale (в частности, был добавлен набор инструкций Thumb, улучшены средства управления питанием, расширена система команд и т.д.).

Сегодня комплекс технологий для рынка интеллектуальных мобильных устройств компания именует Intel Personal Internet Client Architecture (PCA). Строго говоря, использовать термин «платформа» в смысле полного, но достаточно жесткого и ограниченного определенными рамками архитектурного решения, в случае с Intel PCA было бы не совсем правомерно. Это скорее воплощение некоего стратегического видении Intel в отношении создания мобильных устройств. РСА специфицирует базовые компоненты, необходимые для решения этой задачи, в то же время оставляя возможность для маневра изготовителям. Не в последнюю очередь она нацелена на создание простой методологии создания мобильного ПО с высокой степенью переносимости или с минимальными требованиями к адаптации.

В рамках РСА существует несколько направлений: ЦП для мобильных и встраиваемых применений, архитектура для DSP-решений, флэш-память. В ряде случаев туда же относится такое направление, как разработка высокоинтегрированных СБИС для сверхминиатюрных устройств (в данном контексте прежде всего мобильных телефонов) и специализированных микросхем, подобных мобильным видеоакселераторам.

ЦП и другие аппаратные компоненты в терминологии Intel относятся к «прикладной подсистеме» (Application Subsystem). Она охватывает платформу XScale и прикладные подсистемы, такие, как управление ресурсами, взаимодействие с ОС (ввод-вывод, подключение устройств и накопителей и т. д.). Кроме того, она предоставляет интерфейсы взаимодействия с внешней памятью, периферией, системой управления питанием. Кроме того, на нее же возлагаются задачи организации высокоуровневого сетевого взаимодействия, прежде всего для подключения к беспроводным сетям Bluetooth и Wi-Fi, а также и обработки подключения к сотовым сетям.

Подсистема коммуникаций обеспечивает низкоуровневую организацию и управление сетевыми соединениями, включая как беспроводные соединения, так и традиционную телефонию и передачу данных. В ее задачи также входит обслуживание соединения по требованию прикладных программ, отслеживание вызовов, обработка ситуаций перехода между зонами и низкоуровневые функции сотовой телефонии (если таковые есть).

Еще один компонент — «стандартная шина». Intel разработала спецификацию унифицированной шины, на базе которой организован интерфейс для связи всех подсистем и компонентов как управляющих, так и передачи данных между прикладной и коммуникационной подсистемами. Здесь следует отметить, что именно унифицированность шины обеспечивает гибкость конфигураций при создании мобильных устройств. Она специфицирует не столько конкретные физические реализации, сколько необходимое подмножество функций, в том числе (в некоторых реализациях) средства обеспечения обратной совместимости или масштабирования.

Подсистема управления памятью специфицирует требования к памяти, определяя ее структуру с учетом типов модулей, производительности и энергопотребления различных типов памяти и охватывая как DRAM, так и энергонезависимую память (например, кэш, ОЗУ, системную память с возможностью «запуска-по-месту», XIP, а также внешние твердотельные накопители). В частности, предусматривается возможность разнообразных блокировок, разделения на логические «разделы» и т. д. Естественно, здесь главное место занимает флэш-память Intel, хотя на практике встречаются реализации и с памятью других изготовителей.

Основное преимущество РСА — предоставление полного комплекса схемотехнических решений для создания мобильных устройств, что позволяет их изготовителям миновать наиболее трудоемкие и дорогостоящие этапы подготовки аппаратных средств. Кроме того, в отличие от ASIC некоторых других изготовителей, Intel предоставляет достаточно полный и гибкий комплекс аппаратных средств и программного обеспечения, необходимых для воплощения в жизнь довольно широкого спектра мобильных концепций, включая даже довольно необычные и сложно совмещаемые с «монолитными» решениями. Примерами тут могут служить смартфоны, КПК, планшетные системы, коммуникаторы и даже интеллектуальная бытовая техника.

Недостаток этой платформы — в цене: на рынке есть и более дешевые решения, правда, уступающие разработкам Intel, но тем не менее позволяющие добиться хорошего компромисса с точки зрения потенциальной аудитории пользователей (например, серия КПК palmOne Zire, которые, несмотря на минимальные технические возможности, достаточно популярны, поскольку стоят зачастую менее 100 долл.). И даже несмотря на декларируемую изготовителем пригодность решений семейства РСА для устройств начального уровня, стремление Intel стимулировать изготовителей создавать более мощные и дорогие устройства просматривается достаточно явно.

Компоненты РСА, естественно, оптимизированы с точки зрения энергопотребления. К решению этой актуальной для мобильных устройств проблемы Intel подходит с двух сторон — как снижая требования к питанию собственно аппаратных компонентов («статический» подход), так и оптимизируя средства автоматической настройки в зависимости от сценария действий пользователя и характера выполняемых операций, а как следствие, нагрузки на основные подсистемы КПК («динамический» подход).

Еще один важный, хотя и несколько «сторонний» компонент — обширный набор хорошо проработанных программных средств, от интеграции и оптимизации ПО для различных программных сред до компиляторов и специализированных библиотек Intel Integrated Performance Primitives (Intel IPP) 2.0. В целом это тема отдельного разговора, хотя следует отметить, что платформа Intel совместима с большинством популярных мобильных ОС, таких, как Symbian, Palm OS, Java 2 Micro Edition (последняя не относится к ОС, но суть та же).

Intel XScale

В семействе процессоров XScale три серии: 270 (наиболее современная и мощная модификация), 260 (первая серия мобильных ЦП Intel, упакованных по технологии Multiple-Chip Product) и 250 (самая первая серия XScale). В целом схемотехника и дизайн в рамках семейства одинаковы, ЦП отличаются наличием интегрированной периферии и габаритами. Обозначение серии — это обозначение ЦП, модификации — системы, где, кроме ЦП, интегрирована память, необходимые контроллеры и периферия (например, РХА 271 — 32 Мбайт Intel StrataFlash плюс 32 Мбайт SDRAM).

Изготовитель имеет возможность приобретать как сам ЦП, так и законченный комплект, в большинстве случаев используется первый вариант (поскольку на рынке есть существенно более доступные по ценам модули флэш-памяти).

Микроархитектура XScale предусматривает семи-, восьмиступенчатый конвейер с возможностью суперконвейерной обработки, средства динамического управления питанием, включая напряжение и тактовую частоту, расширения системы команд, предназначенные для ускорения обработки мультимедиа-данных, буфер предсказания переходов на 128 позиций, 32-Кбайт кэши инструкций и данных (IMMU/DMMU), 2-Кбайт мини-кэш, буфер для предотвращения «пробуксовки» кэша при обработке быстроменяющихся потоков данных. Также имеются блоки управления трансляцией адресов при выборке команд и инструкций (на 32 позиции каждый), мониторинга производительности, отладочный модуль (с возможностью расставлять точки прерывания и буфером трассировки на 256 позиций). Внутренняя шина данных имеет ширину 64 бита, обеспечивает одновременный ввод и вывод 32-бит слов, пропускная способность достигает 4,8 Гбайт/с (2,4 Гбайт/с в каждом направлении) при тактовой частоте 600 МГц. Кроме того, имеется буфер записи (восемь позиций), который обеспечивает возможность продолжения обработки, не дожидаясь завершения операций записи в память.

Архитектура Intel XScale совместима с системой команд ARMv5TE. Интересная особенность — суперконвейерная обработка, что и позволяет существенно повышать тактовые частоты. В конвейере объединяются целочисленные и МАС-операции, а также операции работы с памятью. Кроме того, имеется вычислительный сопроцессор, обеспечивающий ускорение обработки медиа-данных.

XScale PXA255. Единственная выпускаемая сейчас микросхема серии РХА25х, представляющая собой интегрированную систему, изготавливается по 180-нм технологии. Ядро ЦП функционирует на тактовой частоте 200—400 МГц. В этой модели была решена проблема недостаточной пропускной способности шины, которая в свое время попортила немало крови конструкторам КПК, когда с выпуском ЦП РХА250 выяснилось, что использование более мощного ЦП не дает ощутимого прироста скорости. Тактовая частота внутренней шины составляет 200 МГц (против 100 МГц в РХА250). Кроме того, микросхема была совместима с полным комплексом периферии, в том числе с платами расширения (PCMCIA/CF и MMC/SD), USB (клиент). Модуль Peripheral Control Module обеспечивает 16 программируемых каналов DMA, интегрированный контроллер ЖК-дисплея (также с DMA для ускорения работы с цветными экранами), интерфейс для коммуникационных контролеров (Bluetooth и сотовая связь), поддержку последовательной периферии, IrDA (FIR и SIR), три UART (один с аппаратным управлением потоком), кодек АС'97, высокоскоростной интерфейс для флэш-памяти StrataFlash и т. д. Модуль System Control Module предоставляет 17 портов ввода-вывода, часы, сторожевой и другие таймеры, контроллер питания, прерываний, два генератора тактовой частоты. Микросхема размещена в корпусе PBGA, площадь монтажа 17x17 мм.

XScale PXA26x. Это семейство стало первым, в котором Intel использовала метод упаковки Multiple-Chip Product. Кристаллы серии РХА26х — высокинтегриро-ванные системы, содержащие в одном корпусе не только ЦП, но и флэш-память довольно большого объема. В корпусе РХА261 размещается 16 Мбайт, РХА262 и РХА263 — 32 Мбайт флэш-памяти Intel StrataFlash, максимум для микросхемы — 256 Мбайт. Тактовые частоты до 200 и 300 МГц соответственно. Также предусматривается интегрированный контроллер дисплея, карт памяти и т. д. Еще одно важное отличие — 32-разрядная шина внешней памяти.

Площадь монтажа ЦП — 13x13 мм, корпус — TF-BGA (294-контактный). Это семейство ЦП предназначалось для высокопроизводительных КПК, правда, готовых устройств с процессорами этого семейства появилось не очень много, поскольку на момент выпуска этой модели КПК с РХА255 еще оставались достаточно новыми и позиционировались как High-End (изготовители делали ставку на беспроводные возможности и большое количество разъемов расширения, а не на вычислительную мощность), а потом появились РХА27х.

XScale PXA27x. Наиболее совершенный на сегодня ЦП серии XScale, находящийся в массовом производстве (кодовое название Bulverde), создавался с учетом накопленного Intel опыта, что и обусловило его популярность. В семействе РХА27х имеется довольно много модификаций.

Процессор обеспечивает высокую степень адаптивности для различных применений, что позволяет строить на его основе как высокопроизводительные high-end КПК, так и относительно недорогие системы. Кроме того, Intel ориентировалась и на применение этого ЦП как базового элемента смартфонов и коммуникаторов, в том числе для сетей третьего поколения (насыщенных мультимедийными данными).

Процессорное ядро имеет семиступенчатый конвейер, 32-Кбайт кэши инструкций и данных, 2-Кбайт мини-кэш. Также предусмотрено 256 Кбайт внутренней памяти SRAM, которая используется, в частности, для хранения и обработки данных в режимах с пониженным энергопотреблением. Тактовая частота ЦП может изменяться в диапазоне 104-624 МГц, напряжение питания ядра — 0,85-1,55 В. Предусматривается возможность работы с четырьмя банками SDRAM (до 512 Мбит, до 104 МГц). В зависимости от модификации ЦП РХА27х выпускаются в разных корпусах: 356-контактном VF-BGA, PXA271 и РХА272 — в 336-контактном FS-CSP. В процессоре может быть интегрирована флэш-память StrataFlash, предусматривается возможность подключения модулей NAND-ППЗУ.

В этой серии Intel реализовала ряд достаточно новых решений, таких, как Mobile SpeedStep и улучшенные средства обработки мультимедиа-данных Wireless ММХ, благодаря которым он оказался в состоянии конкурировать со СБИС, содержащими специализированные ядра DSP (прежде всего речь идет о Texas Instruments).

К числу таких разработок можно отнести и Intel Quick Capture, подсистему ускорения обработки растровой графики, снимаемой с камер и источников звука. Стоит отметить Mobile-интерфейс Scalable Link (Intel MSL), предназначенный для взаимодействия коммуникационных и прикладных ЦП (пропускная способность до 416 Мбит/с) и снижающий нагрузку на шины данных системы.

Кроме того, все микросхемы семейства предоставляют средства поддержки самой разнообразной периферии, в том числе USB Host/Client, USB OTG, SD I/O, карт памяти (ММС/SDCard, Memory Stick), SIM-карт, клавиатур, PCMCIA/CF и т. д. На сегодня это единственная платформа, обеспечивающая приемлемое быстродействие при работе с экранами высокого разрешения (для КПК это 640x480), даже без подключения специализированных микросхем, таких, как NVIDIA GoForce, ATI Imageon или «родной» Intel 2700G.

Функциональность подсистемы Wireless SpeedStep, в общем, очевидна. От стандартных средств снижения энергопотребления, реализованных в ЦП других серий, Wireless SpeedStep отличается наличием новых режимов работы: «глубокий останов», «сон» и «глубокий сон». Идея примерно та же, что и в SpeedStep на ноутбуках, с той лишь разницей, что СБИС, лежащая в основе КПК, предоставляет возможность отключить значительно больше простаивающих в каждый конкретный момент времени блоков.

Intel Quick Capture — подсистема взаимодействия с устройствами, генерирующими потоки медиа-данных, прежде всего с камерами и источниками аудиопотоков (цифровые фотоаппараты, запись видео со звуком и т. д.). Предусматривается три режима: Quick View (предварительный просмотр изображения), Quick Shot (быстрое кодирование и запись картинки, до 4 Мпиксел) и Quick Video (запись видео).

Информация о работе Карманные персональные компьютеры