Квантовые компьютеры и нейрокомпьютеры

Автор работы: Пользователь скрыл имя, 12 Октября 2014 в 19:52, реферат

Краткое описание

Сегодняшнее время невозможно представить без компьютера. Применение компьютерных технологий сегодня затрагивает все сферы человеческой деятельности, будь то строительство, промышленность, образование, наука, экономика и т.д.
С каждым годом компьютеры становятся более мощными и производительными, притом технологии развиваются так быстро, что аналитики давшие прогнозы на будущее компьютерной индустрии 10 лет назад, в настоящее время понимают, что здорово просчитались.
Развитие компьютерной техники – это не только увлечение мощности, производительности и снижение себестоимости материалов и технологий, но и разработка и создание новых типов компьютеров, способных мыслить, подобно человеку.

Содержание

Введение
Глава I. Искусственный интеллект – его понятие сущность
теории
Понятие искусственного интеллекта
История развития систем искусственного интеллекта
Подходы к построению искусственного интеллекта
Подход к искусственному интеллекту Алана Тьюринга
Самообучение искусственного интеллекта
Искусственный интеллект – новая информационная
революция
Глава II Квантовые компьютеры и нейрокомпьютеры
Квантовый компьютер
Нейрокомпьютер
Глава III Основы нейроподобных сетей
Некоторые сведения о мозге
Нейрон как элементарное звено
Нейроподобный элемент
Нейроподобный сети
Обучение нейроподобной сети
Глава IV Может ли компьютер мыслить
Реально ли компьютерное мышление
Заключение
Список литературы

Вложенные файлы: 1 файл

Реферат Искусственный интелект.docx

— 134.81 Кб (Скачать файл)

Конечно, можно сказать, что выразительности алгебры высказываний не хватит для полноценной реализации ИИ, но стоит вспомнить, что основой всех существующих ЭВМ является, бит — ячейка памяти, которая может принимать значения только 0 и 1. Таким образом, было бы логично предположить, что все, что возможно реализовать на ЭВМ, можно было бы реализовать и в виде логики предикатов. Хотя здесь ничего не говорится о том, за какое время.

Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) еще и про межуточные значения — не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет. Хотя, правда, на экзамене будут приниматься только ответы из разряда классической булевой алгебры.

Для большинства логических методов характерна большая трудоемкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошая работа обычно гарантируется при сравнительно небольшом размере базы данных.

Под структурным подходом мы подразумеваем здесь попытки построения ИИ путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон.

Позднее возникли и другие модели, которые в простонародье обычно известны под термином "нейронные сети" (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети.

НС наиболее успешно применяются в задачах распознавания образов, в том числе сильно зашумленных, однако имеются и примеры успешного применения их для построения собственно систем ИИ, это уже ранее упоминавшийся ТАИР.

Для моделей, построенных по мотивам человеческого мозга характерна не слишком большая выразительность, легкое распараллеливание алгоритмов, и связанная с этим высокая производительность параллельно реализованных НС. Также для таких сетей характерно одно свойство, которое очень сближает их с человеческим мозгом — нейронные сети работают даже при условии неполной информации об окружающей среде, то есть, как и человек, они на вопросы могут отвечать не только "да" и "нет" но и "не знаю точно, но скорее да".

Довольно большое распространение получил и эволюционный подход. При построении систем ИИ по данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель. После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели, из которых опять выбираются самые лучшие и т. д.

В принципе можно сказать, что эволюционных моделей как таковых не существует, существует только эволюционные алгоритмы обучения, но модели, полученные при эволюционном подходе, имеют некоторые характерные особенности, что позволяет выделить их в отдельный класс.

Такими особенностями являются перенесение основной работы разработчика с построения модели на алгоритм ее модификации и то, что полученные модели практически не сопутствуют извлечению новых знаний о среде, окружающей систему ИИ, то есть она становится как бы вещью в себе.

Еще один широко используемый подход к построению систем ИИ — имитационный. Данный подход является классическим для кибернетики с одним из ее базовых понятий — "черным ящиком" (ЧЯ). ЧЯ — устройство, программный модуль или набор данных, информация о внутренней структуре и содержании которых отсутствуют полностью, но известны спецификации входных и выходных данных. Объект, поведение которого имитируется, как раз и представляет собой такой "черный ящик". Нам не важно, что у него и у модели внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же.

Таким образом, здесь моделируется другое свойство человека — способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит ему массу времени, особенно в начале его жизни.

Основным недостатком имитационного подхода также является низкая информационная способность большинства моделей, построенных с его помощью.

С чем связана одна очень интересная идея. Кто бы хотел жить вечно? Я думаю, что почти все ответят на этот вопрос "я".

Представим себе, что за нами наблюдает какое-то устройство, которое следит за тем, что в каких ситуациях мы делаем, говорим. Наблюдение идет за величинами, которые поступают к нам на вход (зрение, слух, вкус, тактильные, вестибулярные и т. д.) и за величинами, которые выходят от нас (речь, движение и др.). Таким образом, человек выступает здесь как типичный ЧЯ.

Далее это устройство пытается отстроить какую-то модель таким образом, чтобы при определенных сигналах на входе человека, она выдавала на выходе те же данные, что и человек. Если данная затея будет когда-нибудь реализована, то для всех посторонних наблюдателей такая модель будет той же личностью, что и реальный человек. А после его смерти она, будет высказывать те мысли, которые предположительно высказывал бы и смоделированный человек.

Мы можем пойти дальше и скопировать эту модель и получить брата близнеца с точно такими же "мыслями".

Можно сказать, что "это конечно все интересно, но причем тут я? Ведь эта модель, только для других будет являться мной, но внутри ее будет пустота. Копируются только внешние атрибуты, но я после смерти уже не буду думать, мое сознание погаснет (для верующих людей слово "погаснет" необходимо заменить на "покинет этот мир") ". Что ж это так. Но попробуем пойти дальше.

Согласно философским представлениям, сознание представляет собой сравнительно небольшую надстройку над нашим подсознанием, которая следит за активностью некоторых центров головного мозга, таких как центр речи, конечной обработки зрительных образов, после чего "возвращает" эти образы на начальные ступени обработки данной информации. При этом происходит повторная обработка этих образов, мы как бы видим и слышим, что думает наш мозг. При этом появляется возможность мысленного моделирования окружающей действительности при нашем "активном" участии в данном процессе. И именно наш процесс наблюдения за деятельностью этих немногих центров является тем, что мы называем сознанием. Если мы "видим" и "слышим" наши мысли, мы в сознании, если нет, то мы находимся в бессознательном состоянии.

Если бы мы смогли смоделировать работу именно этих немногих "сознательных" нервных центров (работа которых правда основана на деятельности всего остального мозга) в качестве одного ЧЯ, и работу "супервизора" в качестве другого ЧЯ, то можно было бы с уверенностью говорить, что "да, данная модель думает, причем так же, как и я". Здесь я ничего не хочу говорить о том, как получить данные о работе этих нервных центров, поскольку на мой взгляд сегодня нет ничего такого, что позволило бы следить за мозгом человека годами и при этом не мешало бы его работе и жизни.

И заканчивая ознакомление с различными методами и подходами к построению систем ИИ, хотелось бы отметить, что на практике очень четкой границы между ними нет. Очень часто встречаются смешанные системы, где часть работы выполняется по одному типу, а часть по-другому.

 

4. Подход к искусственному интеллекту Алана Тьюринга.

 

Тьюринг (Turing) Алан Матисон (1912 — 1954) — гениально одаренный английский математик. В возрасте 24 лет написал работу "О вычислимых числах", которой суждено было сыграть исключительно важную роль в развитии вычислительной математики и информатики. Работа касалась очень трудной проблемы математической логики — описания задач, которые не удавалось решить даже теоретически. Пытаясь найти такое описание, Тьюринг использовал в качестве вспомогательного средства мощное, хотя и существующее лишь в его воображении, вычислительное устройство, в котором он предвосхитил ключевые свойства современного компьютера.

Тьюринг назвал свое абстрактное механическое устройство "универсальной машиной", поскольку она должна была справляться с любой допустимой, то есть теоретически разрешимой задачей — математической или логической. Данные должны были вводиться в машину на бумажной ленте, поделенной на клетки — ячейки.  Каждая такая ячейка либо содержала символ, либо была пустой. Машина могла не только обрабатывать записанные на ленте символы, но и изменять их, стирая старые и записывая новые в соответствии с инструкциями, хранимыми в ее внутренней памяти. Некоторые идеи Тьюринга были, в конечном счете, воплощены в реальных машинах.

Алан Тьюринг участвовал в послевоенные годы в создании мощного компьютера — машины с хранимыми в памяти программами, ряд свойств которой он взял от своей гипотетической универсальной машины. Опытный образец компьютера ACE (Automatic Computing Engine — автоматическое вычислительное устройство) вступил в эксплуатацию в мае 1950 г. Тьюринг увлекался проблемами машинного интеллекта (он даже придумал тест, который по его мнению позволял выяснить, может ли машина мыслить).

Вероятно, Тьюринг мог бы еще многого достигнуть в этой области, но этому мешала его экцентричность. В 1954г., занимаясь изготовлением химических веществ из обычных бытовых продуктов, Тьюринг получил цианистый калий и принял его.

Нельзя сказать, что идея "мыслящей" машины была абсолютно новой.Достаточно вспомнить Раймонда Луллия, который еще в 1272 году предложил создать устройство, способное произвести все возможные знания, составляя слова случайным образом. Другой работой Луллия было логическое доказательство истинности христианства - задача того же масштаба и той же степени невыполнимости. Позднее, в 1726 году, эта идея Луллия была высмеяна Джонатаном Свифтом в его "Путешествии Гулливера", где была описана попытка сумасшедшего профессора привести в действие усилиями сорока студентов "машину размером 20 футов в каждом измерении", которая должна была произвести все знания о мире, складывая слова всех языков, написанные на обрывках бумажной ленты.

Машина Тьюринга тоже должна была оперировать с бумажной лентой. Но все же, одна машина Тьюринга представляется достаточно примитивным устройством, и в "мире Тьюринга" возникает "Всемирная Машина", способная читать записи всех остальных машин, которые являются моделями скорее рефлексов, чем интеллекта. "Всемирная Машина" и есть то, что, в принципе, может собрать все возможные знания о мире Тьюринга. Отметим еще одну аналогию с механизмом Луллия - логическое обоснование Бога, как всеведущего существа. Всемирная Машина должна была являться своеобразным всеведущим и почти всемогущим Богом в мире Тьюринга. Собственно, сам термин "компьютер" (computer) до Тьюринга означал человека, который выполняет вычисления. Впервые его применительно к техническому устройству использовал именно Тьюринг в 1936 году: "Таким образом, можно сказать, что специализированная машина может выполнять вычислительную работу (computing), если бумажная лента содержит соответствующие инструкции и правила".

Однако самым главным в работе Тьюринга было определение интеллекта именно через его способность к самообучению. Сейчас это кажется очевидным. Но из наблюдения за поведением человека отнюдь не следует, что способность к самообучению является неотъемлемой частью сознания. Вспомните такие принципы, как "оставаться верным себе в любых обстоятельствах", "оставаться самим собой". Похоже, что если не большинство, то по крайней мере значительная часть "человеческих существ" не являются носителями интеллекта, по крайней мере, в части его неотъемлемой возможности к самосовершенствованию. Что, впрочем, не лишает их права оставаться "человеческими существами". Можно предположить, что упомянутая функция человеческого сознания должна присутствовать по крайней мере в детстве. А вот потом взгляды на ее необходимость и на то, является ли она положительной чертой человеческого характера, разделяются. Но Тьюринг из всех проявлений многогранного процесса (и одновременно - явления), каковым является человеческое сознание, выделил именно "самообучаемость" как основное характеристическое свойство.

В науке не обязательно решить задачу, иногда именно постановка задачи является самым главным, так как это определяет направление развития на многие годы, в то время как результат, обладая законченной ценностью, уже не несет в себе возможности к развитию. Существует небезосновательное мнение о том, что человек способен привыкнуть и приспособиться к любым условиям жизни. Если физические условия меняются на протяжении одной жизни незначительно, то информационная среда, а следовательно, и правила игры и свойственные им "выигрышные стратегии" гораздо более изменчивы. Те из них, которые были признаны общественным мнением безусловно правильными в период детства и воспитания конкретного человека, всего лишь через несколько десятилетий могут оказаться совершенно бесперспективными, что находится в явном противоречии с необходимостью выживания. Или выживание не является такой уж необходимостью? Ответ на этот вопрос многое бы прояснил в решении конкретных жизненных ситуаций и особенно классической проблемы "отцов и детей", но, боюсь, единого мнения здесь сформировать не удастся. Каждый принимает решение о степени своей возможной адаптации сам. И каждый прав, но только для себя, какое бы он решение ни принял. Скорее всего, речь идет о неизбежной реализации предопределенной схемы поведения, заложенной генетически и функционирующей в соответствии с биологическим отсчетом времени на протяжении развития индивидуума, либо о "жестком ядре" личности и изменчивой, адаптирующейся внешней оболочке, причем граница между первым и вторым опять-таки определена генетическими особенностями на "аппаратном" уровне.

Информация о работе Квантовые компьютеры и нейрокомпьютеры