Автор работы: Пользователь скрыл имя, 06 Января 2013 в 18:34, курсовая работа
На протяжении всей своей многовековой истории, вплоть до совсем недавнего времени, это искусство криптологии немногим, в основном верхушке общества, не выходя за пределы резиденций глав государств, посольств и – конечно же – разведывательных миссий. И лишь несколько десятилетий назад все изменилось коренным образом – информация приобрела самостоятельную коммерческую ценность и стала широко распространенным, почти обычным товаром. Ее производят, хранят, транспортируют, продают и покупают, а значит – воруют и подделывают – и, следовательно, ее необходимо защищать.
1 Введение 2
1.1 Исторические основы криптологии 2
1.2 Криптология в современном мире 3
2 Криптология 4
2.1 Основные понятия криптологии 4
2.2 Требования к криптосистемам 7
2.3 Симметрические криптосистемы 8
2.3.1 Метод Цезаря 9
2.3.2 Системы шифрования Вижинера 10
2.3.3 Гаммирование 11
2.4 Криптосистемы с открытым ключом 12
2.4.1 Система RSA 14
2.4.2 Алгоритм Эль-Гамаля 16
3 Практическое применение криптологии 18
3.1 Цифровая подпись 18
3.1.1 Общие положения 18
3.1.2 Алгоритм DSA 20
3.2 Алгоритм DES 22
А вот на приемной стороне процесс дешифрования все же возможен, и поможет нам в этом хранимое в секрете число d. Достаточно давно была доказана теорема Эйлера, частный случай которой утвержает, что если число n представимо в виде двух простых чисел p и q, то для любого x имеет место равенство (x(p-1)(q-1))mod n = 1. Для дешифрования RSA-сообщений воспользуемся этой формулой.
Возведем обе ее части в степень (-y) : (x(-y)(p-1)(q-1))mod n = 1(-y) = 1.
Теперь умножим обе ее части на x : (x(-y)(p-1)(q-1)+1)mod n = 1*x = x.
А теперь вспомним как создавались открытый и закрытый ключи. с помощью алгоритма Евклида подбиралось такое d, что e*d+(p-1)(q-1)*y=1, то есть e*d=(-y)(p-1)(q-1)+1. А следовательно в последнем выражении предыдущего абзаца можем заменить показатель степени на число (e*d). Получаем (xe*d)mod n = x. То есть для того чтобы прочесть сообщение ci=((mi)e)mod n достаточно возвести его в степень d по модулю m :
((ci)d)mod n = ((mi)e*d)mod n = mi.
На самом деле операции возведения
в степень больших чисел
В 1985 году Т.Эль-Гамаль (США) предложил следующую
схему на основе возведения в степень
по модулю большого простого числа P.
Задается большое простое число P и целое число A, 1 < A < P. Сообщения представляются
целыми числами M из интервала 1 < M < P.
Протокол передачи сообщения M выглядит следующим образом.
абоненты знают числа A и P;
абоненты генерируют независимо друг от друга случайные числа:
Ka, Kb
удовлетворяющих условию:
1 < K < P
получатель вычисляет и
В = A Kb mоd(P)
отправитель шифрует сообщение M и отправляет полученную последовательность получателю
C = M * B Ka mоd(P)
получатель расшифровывает полученное сообщение
D = ( A Ka ) -Kb mоd(P)
M = C * D mоd(P)
В этой системе открытого шифрования та же степень защиты, что для алгоритма RSA с модулем N из 200 знаков, достигается уже при модуле P из 150 знаков. Это позволяет в 5-7 раз увеличить скорость обработки информации. Однако, в таком варианте открытого шифрования нет подтверждения подлинности сообщений.
Для того, чтобы обеспечить при открытом шифровании по модулю простого числа P также и процедуру подтверждения подлинности отправителя Т.ЭльГамаль предложил следующий протокол передачи подписанного сообщения M:
абоненты знают числа A и P;
отправитель генерирует случайное число и хранит его в секрете:
Ka
удовлетворяющее условию:
1 < Ka < P
вычисляет и передаёт получателю число B, определяемое последователньостью:
В = A Ka mоd(P)
Для сообщения M (1 < M < P):
выбирает случайное число L (1 < L < P), удовлетворяющее условию
( L , P – 1 ) = 1
вычисляет число
R = A L mоd(P)
решает относительно S
M = Ka * R + L * S mоd(P)
передаёт подписанное сообщение
[ M, R, S ]
получатель проверяет
A M = ( B R ) * ( R S ) mоd(P)
В этой системе секретным ключом для подписывания сообщений является число X, а открытым ключом для проверки достоверности подписи число B. Процедура проверки подписи служит также и для проверки правильности расшифровывания, если сообщения шифруются.
При ведении деловой переписки, при заключении контрактов подпись ответственного лица является непременным атрибутом документа, преследующим несколько целей:
Выполнение данных требований основывается на следующих свойствах подписи:
Существует несколько методов построения ЭЦП, а именно:
Кроме перечисленных, существуют и другие методы построения схем ЭЦП
- групповая подпись,
В 1991 г. в США был опубликован проект федерального стандарта цифровой подписи – DSS (Digital Signature Standard, [DSS91], описывающий систему цифровой подписи DSA (Digital Signature Algorithm). Одним из основных критериев при создании проекта была его патентная чистота.
Предлагаемый алгоритм DSA, имеет, как и RSA, теоретико-числовой характер, и основан на криптографической системе Эль-Гамаля в варианте Шнорра. Его надежность основана на практической неразрешимости определенного частного случая задачи вычисления дискретного логарифма. Современные методы решения этой задачи имеют приблизительно ту же эффективность, что и методы решения задачи факторизации; в связи с этим предлагается использовать ключи длиной от 512 до 1024 бит с теми же характеристиками надежности, что и в системе RSA. Длина подписи в системе DSA меньше, чем в RSA, и составляет 320 бит.
С момента опубликования проект получил много критических отзывов, многие из которых были учтены при его доработке. Одним из главных аргументов против DSA является то, что, в отличие от общей задачи вычисления дискретного логарифма, ее частный случай, использованный в данной схеме, мало изучен и, возможно, имеет существенно меньшую сложность вскрытия. Кроме того, стандарт не специфицирует способ получения псевдослучайных чисел, используемых при формировании цифровой подписи, и не указывает на то, что этот элемент алгоритма является одним из самых критичных по криптографической стойкости.
Функции DSA ограничены только цифровой подписью, система принципиально не предназначена для шифрования данных. По быстродействию система DSA сравнима с RSA при формировании подписи, но существенно (в 10-40 раз) уступает ей при проверке подписи.
При генерации ЭЦП используются параметры трех групп:
общие параметры
секретный ключ
открытый ключ
Общие параметры необходимы для функционирования системы в целом. Секретный ключ используется для формирования ЭЦП, а открытый – для проверки ЭЦП. Общими параметрами системы являются простые целые числа p,q,g, удовлетворяющие следующим условиям:
p: 2^511<p<2^512
q: простой делитель числа (p-1), который удовлетворяет условию
2^159<q<2^160
g: так называемый генератор, удовлетворяющий
равенству g=h^((p-1)/q)mod p >1.
Параметры p,q,g публикуются для всех участников обмена ЭД с ЭЦП.
Секретный ключ x случайно выбирается из диапазона [1,q] и держится в секрете.
Открытый ключ вычисляется: y=g^x mod p.
Также при описании данной схемы будут использоваться следующие обозначения и дополнительные параметры: m – входное сообщение пользователя для схемы с ЭЦП; k – случайное число, удовлетворяющее условию 0<k<q, хранящееся в секрете и меняющееся от одной подписи к другой; H – хэш-функция, h – хэш-код сообщения.
Процесс генерации ЭЦП состоит из нескольких этапов:
1.Вычисляется хэш-код
2.Из диапазона [1,q] случайным образом выбирается значение k и вычисляется r= (g^k mod p) mod q
3. Вычисляется S= (k^-1(h+xr)) mod q, где k^-1 удовлетворяет условию
(k^-1*k) mod q =1
Значения r,s являются ЭЦП сообщения m и передаются вместе с ним по каналам связи.
Пусть принято сообщение m1 и его подпись s1,r1.
Проверка ЭЦП происходит следующим образом:
w= s1^-1 mod q
u1 = (H(m1)w) mod q
u2 = ((r1/w) mod q
v = (( g^u1y^u2) mod p ) mod q
Если последнее равенство
Принятие стандарта шифрования DES явилось мощным толчком к широкому применению шифрования в коммерческих системах. Введение этого стандарта – отличный пример унификации и стандартизации средств защиты. Примером системного подхода к созданию единой крупномасштабной системы защиты информации является директива Министерства финансов США 1984 года, согласно которой все общественные и частные организации, ведущие дела с правительством США, обязаны внедрить процедуру шифрования DES; крупнейшие банки Citibank,Chase Manhattan Bank, Manufaktures Hannover Trust, Bank of America, Security Pacific Bank также внедрили эту систему.
Министерство энергетики США располагает более чем 30 действующими сетями, в которых используется алгоритм DES, Министерство юстиции устанавливает 20000 радиоустройств, располагающих средствами защиты на базе DES. Стандартизация в последнее время приобретает международный характер, подтверждение тому – международный стандарт 1987 года ISO 8372, разработанный на основе криптоалгоритма DES.
В качестве стандартной аппаратуры шифрования можно назвать устройство Cidex-НХ, базирующееся на алгоритме DES; скорость шифрования – от 56 Кбит/с до 7 Мбит/с. Серийно выпускается автономный шифровальный блок DES 2000, в нем также используется процедура шифрования DES; скорость шифрования – от 38,4 Кбит/с до 110 Кбит/с. В различных секторах коммерческой деятельности используется процессор шифрования/дешифрования данных FACOM 2151А на основе алгоритма DES; скорость – от 2,4 Кбит/с до 19,2 Кбит/с. С распространением персональных компьютеров наиболее эффективными для них стали программные средства защиты. Так, разработан пакет программ для шифрования/дешифрования информации СТА (Computer Intelligence Access), реализующий алгоритм DES. Этот же алгоритм использован в пакете SecretDisk (C F Systems) для исключения несанкционированного доступа к дискам.
Таким образом, алгоритм DES представляет собой основной механизм, применявшийся частными и государственными учреждениями США для защиты информации. В то же время Агентство национальной безопасности, выступающее как эксперт по криптографическим алгоритмам, разрабатывает новые алгоритмы шифрования данных для массового использования. В 1987 году Национальное бюро стандартов после обсуждения подтвердило действие DES; его пересмотр намечалось провести не позднее января 1992 года, и на сегодняшний день действие DES ограничивается исключительно коммерческими системами.