Методы сжатия информации

Автор работы: Пользователь скрыл имя, 17 Апреля 2014 в 01:23, отчет по практике

Краткое описание

Я рассмотрю методы сжатия без потери информации. К таким методам относятся:
Алгоритм Хафмана
Арифметическое кодирование
Контекстное кодирование (PPM - Prediction by Partial Matching)
Алгоритм Зива-Лемпеля(-Welch)
Алгоритм Барроуза-Веллера

Содержание

Методы сжатия информации 2
Статический алгоритм Хафмана 5
Метод Шеннона-Фано 9
Алгоритм Зива-Лемпеля 10
Локально адаптивный алгоритм сжатия 11
Сжатие данных с использованием преобразования Барроуза-Вилера 12
Используемая литература 15

Вложенные файлы: 1 файл

ТИПиС_МетСжИнф_ШерстневаАА_ЗТ-1-10.docx

— 98.04 Кб (Скачать файл)

Сжатие данных с использованием преобразования Барроуза-Вилера

Майкл Барроуз и Давид Вилер (Burrows-Wheeler) в 1994 году предложили свой алгоритм преобразования (BWT). Этот алгоритм работает с блоками данных и обеспечивает эффективное сжатие без потери информации. В результате преобразования блок данных имеет ту же длину, но другой порядок расположения символов. Алгоритм тем эффективнее, чем больший блок данных преобразуется (например, 256-512 Кбайт).

Последовательность S, содержащая N символов ({S(0),… S(N-1)}), подвергается N циклическим сдвигам (вращениям), лексикографической сортировке, а последний символ при каждом вращении извлекается. Из этих символов формируется строка L, где i-ый символ является последним символом i-го вращения. Кроме строки L создается индекс I исходной строки S в упорядоченном списке вращений. Существует эффективный алгоритм восстановления исходной последовательности символов S на основе строки L и индекса I. Процедура сортировки объединяет результаты вращений с идентичными начальными символами. Предполагается, что символы в S соответствуют алфавиту, содержащему K символов.

Для пояснения работы алгоритма возьмем последовательность S= “abraca” (N=6), алфавит X = {‘a’,’b’,’c’,’r’}.

1. Формируем матрицу из N*N элементов, чьи строки представляют собой  результаты циклического сдвига (вращений) исходной последовательности S, отсортированных лексикографически. По крайней мере одна из  строк M содержит исходную последовательность S. Пусть I является индексом строки S. В приведенном примере индекс I=1, а матрица M имеет вид:

 

Номер строки

 

0

aabrac

1

abraca

2

acaabr

3

bracaa

4

caabra

5

racaab


 

 

2. Пусть строка L представляет собой  последнюю колонку матрицы M с  символами L[0],…,L[N-1] (соответствуют M[0,N-1],…,M[N-1,N-1]). Формируем строку последних символов вращений. Окончательный результат характеризуется (L,I). В данном примере L=’caraab’, I =1.

Процедура декомпрессии использует L и I. Целью этой процедуры является получение исходной последовательности из N символов (S).

1. Сначала вычисляем первую колонку  матрицы M (F). Это делается путем  сортировки символов строки L. Каждая  колонка исходной матрицы M представляет  собой перестановки исходной  последовательности S. Таким образом, первая колонка F и L являются перестановками S. Так как строки в M упорядочены, размещение символов в F также  упорядочено. F=’aaabcr’.

2. Рассматриваем ряды матрицы M, которые начинаются с заданного  символа ch. Строки матрицы М упорядочены лексикографически, поэтому строки, начинающиеся с ch упорядочены аналогичным образом. Определим матрицу M’, которая получается из строк матрицы M путем циклического сдвига на один символ вправо. Для каждого i=0,…, N-1 и каждого j=0,…,N-1,

M’[i,j] = m[i,(j-1) mod N]

В рассмотренном примере M и M’ имеют вид:

Строка

M

M’

0

aabrac

caabra

1

abraca

aabraс

2

acaabr

racaab

3

bracaa

abraca

4

caabra

acaabr

5

racaab

bracaa


 

 

Подобно M каждая строка M’ является вращением S, и для каждой строки M существует соответствующая строка M’. M’ получена из M так, что строки M’ упорядочены лексикографически, начиная со второго символа. Таким образом, если мы рассмотрим только те строки M’, которые начинаются с заданного символа ch, они должны следовать упорядоченным образом с учетом второго символа. Следовательно, для любого заданного символа ch, строки M, которые начинаются с ch, появляются в том же порядке что и в M’, начинающиеся с ch. В нашем примере это видно на примере строк, начинающихся с ‘a’. Строки ‘aabrac’, ‘abraca’ и ‘acaabr’ имеют номера 0, 1 и 2 в M и 1, 3, 4 в M’.

Используя F и L, первые колонки M и M’ мы вычислим вектор Т, который указывает на соответствие между строками двух матриц, с учетом того, что для каждого j = 0,…,N-1 строки j M’ соответствуют строкам T[j] M.

Если L[j] является к-ым появлением ch в L, тогда T[j]=1, где F[i] является к-ым появлением ch в F. Заметьте, что Т представляет соответствие один в один между элементами F и элементами L, а F[T[j]] = L[j]. В нашем примере T равно: (4 0 5 1 2 3).

3. Теперь для каждого i = 0,…, N-1 символы L[i] и F[i] являются соответственно последними и первыми символами строки i матрицы M. Так как каждая строка является вращением S, символ L[i] является циклическим предшественником символа F[i] в S. Из Т мы имеем F[T[j]] = L[j]. Подставляя i =T[j], мы получаем символ L[T(j)], который циклически предшествует символу L[j] в S.

Индекс I указывает на строку М, где записана строка S. Таким образом, последний символ S равен L[I]. Мы используем вектор T для получения предшественников каждого символа: для каждого i = 0,…,N-1 S[N-1-i] = L[Ti[I]], где T0[x] =x, а Ti+1[x] = T[Ti[x]. Эта процедура позволяет восстановить первоначальную последовательность символов S (‘abraca’).

Последовательность Ti[I] для i =0,…,N-1 не обязательно является перестановкой чисел 0,…,N-1. Если исходная последовательность S является формой Zp для некоторой подстановки Z и для некоторого p>1, тогда последовательность Ti[I] для i = 0,…,N-1 будет также формой Z’p для некоторой субпоследовательности Z’. Таким образом, если S = ‘cancan’, Z = ‘can’ и p=2, последовательность Ti[I] для i = 0,…,N-1 будет [2,4,0,2,4,0].

Описанный выше алгоритм упорядочивает вращения исходной последовательности символов S и формирует строку L, состоящую из последних символов вращений. Для того, чтобы понять, почему такое упорядочение приводит к более эффективному сжатию, рассмотрим воздействие на отдельную букву в обычном слове английского текста.

Возьмем в качестве примера букву “t” в слове ‘the’ и предположим, что исходная последовательность содержит много таких слов. Когда список вращений упорядочен, все вращения, начинающиеся с ‘he’, будут взаимно упорядочены. Один отрезок строки L будет содержать непропорционально большое число ‘t’, перемешанных с другими символами, которые могут предшествовать ‘he’, такими как пробел, ‘s’, ‘T’ и ‘S’.

Аналогичные аргументы могут быть использованы для всех символов всех слов, таким образом, любая область строки L будет содержать большое число некоторых символов. В результате вероятность того, что символ ‘ch’ встретится в данной точке L, весьма велика, если ch встречается вблизи этой точки L, и мала в противоположном случае. Это свойство способствует эффективной работе локально адаптивных алгоритмов сжатия, где кодируется относительное положение идентичных символов. В случае применения к строке L, такой кодировщик будет выдавать малые числа, которые могут способствовать эффективной работе последующего кодирования, например, посредством алгоритма Хафмана.

 

Используемая литература

    1. Ватолин Д., Ратушняк А., Смирнов М., Юкин В. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео. - М.: ДИАЛОГ-МИФИ, 2002. - 384 с.
    2. Вернер М. Основы кодирования М.: Техносфера, 2004. - 288 с.
    3. Сэломон Д. Сжатие данных, изображения и звука. М.: Техносфера, 2006. - 368 с.
    4. Семенов Ю.А. Образовательный сервер "Телекоммуникационные технологии". М.: 2004. URL: http://book.itep.ru (дата обращения 16.04.2014)

 

 


Информация о работе Методы сжатия информации