Монитор как зеркало персонального компьютера

Автор работы: Пользователь скрыл имя, 31 Мая 2012 в 21:18, контрольная работа

Краткое описание

В данном реферате рассказано фактически все, что было бы интересно знать о мониторах: от различных параметров монитора до подключения и перспективах развития. В нем пойдет речь о современных моделях мониторов, удовлетворяющих сегодняшнему состоянию этой индустрии, не вдаваясь в подробности старых графических стандартов и технологии производства допотопных электронно-лучевых трубок.

Содержание

Аннотация
1 Монитор как зеркало персонального компьютера
2 Параметры кинескопа
Размер экрана
Эффективное разрешение
Схема создания изображения
Расстояние между точками и разрешение
Экранные покрытия
Плоскостность экрана
Прочие характеристики монитора
3 Частотные характеристики монитора
Частоты синхронизации
Автоматический выбор частот
Полоса частот видеоусилителя и тактовая частота видеосигнала
Требования к частотным характеристикам монитора
4 Управление монитором
Цифровое управление
Индикация рабочих характеристик
Органы управления
5 Подключение монитора к компьютеру
Требования к видеоадаптеру
Соединение монитора и видеоадаптера
Поддержка технологии Plug and Play
6 Стандарты для мониторов
Эргономические стандарты
Стандарты уровней излучений
Электромагнитная совместимость
Экологические стандарты
Стандарты пониженного энергопотребления
7 Мультимедиа мониторы
8 Активная матрица
9 Перспективы развития

Вложенные файлы: 1 файл

Мониторы.doc

— 214.50 Кб (Скачать файл)

Люминофорные элементы светятся под действием попадающих на них электронов. В кинескопе формируются три электронных пучка – каждый на свой цвет. Пучок имеет конечные размеры, поэтому, чтобы он не попадал на края соседних точек люминофора другого цвета и не “подсвечивал” их, применяется теневая маска (Shadow Mask), ограничивающая размеры пучков. Для получения качественного изображения отверстия маски должны быть расположены строго напротив люминофорных элементов, нанесенных на экран. Задача осложняется тем, что диаметр отверстий составляет всего около 1,15 мм (ширина полос приблизительно 0,08 мм). В процессе работы часть мощности пучков поглощается теневой маской, приводя к ее тепловой деформации и ухудшению совмещения маски и люминофора. Для уменьшения этого эффекта в современных кинескопах применяются маски из специального железоникелевого сплава – инвара (от латинского invariabilis – неизменный), обладающего малым коэффициентом теплового расширения. Материал маски обычно указывается в паспортных данных.

В зависимости от того, люминофорные элементы применяются в кинескопе, по форме размещения элементов разного вида различают дельтовидные теневые маски и щелевые. В кинескопах с люминофорными элементами в виде полос теневая маска представляет собой решетку из тонких вертикально натянутых проволочек, поэтому ее называют апертурной решеткой. Кинескоп с апертурной решеткой был запатентован фирмой Sony, выпускающей ЭЛТ Trinitron. Для уменьшения колебаний решетки проволочки скреплены горизонтальными демпфирующими нитями. На кинескопах размером 15 дюймов используется одна нить, на 17 и более –две. Эти нити дают на экране тонкие тени, слегка заметные при работе. Некоторые пользователи видят в этом недостаток трубок Trinitron, однако, есть и такие, кто использует эти естественные “линейки” с пользой, например для выравнивания элементов при графических работах. Срок действия патента Sony уже истек, поэтому сейчас трубки с апертурной решеткой выпускают также компания Mitsubishi (Diamondtron) и Panasonic (17 дюймов ЭЛТ PanaFlat). Кроме того, фирма Sony выпускает кинескопы SonicTron с шагом сетки 0,26 мм, которыми оснащаются мониторы компании ViewSonic.

На некоторых моделях 14-дюймовых мониторов и на многих телевизионных кинескопах применяются прямоугольные люминофорные элементы, однако они не позволяют получить хорошее качество изображения, так как электронный пучок имеет все же не прямоугольное сечение. Разрабатываются кинескопы, отверстия теневой маски которых имеют эллиптическую форму (кинескопы CromaClear фирмы NEC). Это позволяет получить эффективное соотношение разрешений по вертикали и горизонтали, что будет понятно из дальнейшего рассмотрения. По утверждениям разработчиков, такие меры создают более резкое изображение, чем в масках с круглыми отверстиями.

 

Расстояние между точками и разрешение

 

Главной характеристикой теневой маски является минимальное расстояние между люминофорными элементами одинакового цвета. Для дельтовидной маски этот параметр называют зерна, расстояние между точками, шагом триад, размером точки или шагом точек (dot pitch, dotted pitch), а для апертурной решетки – расстоянием между полосами или шагом полос (aperture grille (AG) pitch, Stripe pitch). Для дельтовидной маски  линия минимального расстояния между точками одного цвета составляет с горизонталью угол 30 градусов. Иногда говорят о размере элемента разрешения, не конкретизируя тип маски, т.к. этот термин относится к обоим типам. На современных 15- и 17-дюймовых мониторах применяются кинескопы с размером зерна от 0,26 до 0,28 мм. На трубках Trinitron и Diamondtron шаг полос составляет 0,25 – 0,26 мм, а на PanaFlat  - 0,24 мм. Для дельтовидной маски расстояние между точками по горизонтали составляет

                                                _

                                         S3/, 87S,

Где S – шаг точек. Для S=0,28 мм эта величина равна 0,24 мм. Некоторые изготовители указывают в рекламе не шаг точек, а именно расстояние между точками по горизонтали. Заметим, что шаг точек по вертикали для дельтовидной маски составляет 0,5S, в то время как для апертурной решетки эквивалент этой величины равен нулю.

Конечно, чем меньше размер элемента разрешения, тем более четкое изображение можно получить на мониторе.

 

         Таблица 1. Количество элементов изображения (триад),

располагающихся по горизонтали кинескопа.

Шаг элемента изображения, мм

      Размер экрана

       15”

     17”

Дельтовидная маска

    0.28

     1155

    1320

 

    0.26 

     1244

    1421

Апертурная решетка

    0.25

     1120    

    1280

 

Как видно из табл.1, даже при минимальном размере полезной площади, которая встречается в выбранном типоразмере, и максимальном размере  элемента изображения 15-дюймовые мониторы позволяют разместить по горизонтали чуть более 1024 триад (но никак не 1280), а 17-дюймовые – 1280 (но не1600), что соответствует определенным ранее эффективным разрешениям для этих размеров аппаратов. Таким образом, указанное разрешение можно назвать физическим параметром разрешения, или просто физическим разрешением монитора. В документации на некоторые мониторы говорится, что их максимальное разрешение на класс выше физического. Например, для 15 дюймов оно соответствует разрешению 1280х1024, а для 17 – 1600х1200. Конечно, на экране нет такого количества элементов разрешения, поэтому этот параметр можно назвать логическим разрешением, характеризующем скорее качество систем развертки, видеоусилителя и фокусировки луча. Монитор эмулирует логическое разрешение в пределах физических возможностей; при этом размер пикселя становится меньше триады. Поэтому, если пытаться воспроизвести последовательность черных и белых вертикальных полос толщиной в один пиксель на разрешении, следующем за физическим пределом кинескопа, на экране появится равномерное серое поле. Одиночная диагональная линия толщиной в один пиксель также будет не без недостатков (нерезкая, с разрывами) при таком разрешении. Геометрические особенности различных теневых масок таковы, что на дельтовидной маске обеспечивается лучшее перекрытие триад на вертикальной линии, проведенной в произвольном месте экрана за счет горизонтального смещения люминофорных элементов соседних рядах. Поэтому потенциально возможности эмуляции логического разрешения для этих кинескопов несколько выше, чем для мониторов с апертурной сеткой при используемых сегодня размерах элементов изображения. Обычно все же с разрешением, превышающем эффективное работают крайне редко, поэтому поддержку монитором высокого максимального разрешения, указанную в паспорте, стоит рассматривать как своеобразную заявку на то, что монитор может обеспечить хорошие характеристики изображения на своем физическом пределе, или, что его эффективное разрешение будет равно физическому.

Приведенные оценки позволяют понять разницу между пикселем – логическим элементом изображения, выводимого на экран, который формируется видеоадаптером в результате выполнения той или иной программы, - и цветовой триадой, являющейся физическим элементом изображения кинескопа.

Часто в характеристиках режим разрешения монитора указывается в не пикселях, а в условных обозначениях разработанных стандартов. В табл. 2 указано соответствие этих обозначений в различных применяемых вариантах для стандартов IBM PC.

 

  Таблица 2. Стандарты разрешения на PC

Разрешение в пикселях

Обозначение

  640х480

VGA

  800x600

SVGA

  1024x768

XGA

  1280x1024

EVGA

  1600x1200

не обозначен

   1152х864

не обозначен

 

Для вертикального разрешения ситуация с физическим количеством точек выглядит менее критично. Для 15-дюймового монитора с шагом зерна 0,28 мм на вертикали 210 мм располагается 1500 триад, а ля 17-дюймового (вертикаль 240 мм) – 1714, т.е. физическое разрешение не ограничивает “разумных” потребностей в логическом разрешении. Некоторая несбалансированность в вертикальном и горизонтальном разрешениях при принятых стандартах связана с ориентацией дельтовидной маски. Фирма NEC выпускает кинескопы ChromaClear с овальными отверстиями теневой маски, вытянутыми в вертикальном направлении. Это позволяет уменьшить указанное несоответствие и эффективнее использовать поверхность экрана, однако возникают проблемы формирования электронных пучков соответствующего сечения. Поэтому существенные изменения вносятся в систему фокусировки. Шаг точек кинескопа ChromaClear – 0,25 мм. Новые трубки ставятся на 15-дюймовые мониторы MultiSync М500, которые появились на российском рынке в 1996 году. Отмечается высокое качество воспроизведения изображения как графических, так и текстовых объектов на этих мониторах. Выпущена 17-дюймовая модель монитора MultiSync (М700) с трубкой ChromaClear.

Если в “будущем” удастся существенно уменьшить шаг триад (например, на 15-20%, т.е. довести его до значения не более 0,20 мм для апертурных кинескопов и не более 0,23 мм для дельтовидных), чтобы физически прейти в следующий класс разрешения, а также соответствующим образом “подтянуть”  электронику устройств с целью повышения частоты кадровой развертки, то  это может ощутимо повысить качество изображения.

 

Экранные покрытия

 

Во время работы монитора поверхность его экрана подвергается интенсивной электронной бомбардировке, в результате чего может накапливаться заряд статического электричества. Это приводит к тому, что поверхность экрана “притягивает” большое количество пыли, а кроме того, при прикосновении рукой к заряженному экрану пользователя может неприятно “щелкнуть” слабый электрический разряд. Для уменьшения потенциала поверхности экрана на него наносят специальные проводящие антистатические покрытия, которые в документации обозначают сокращением AS – anti-static.

Следующая цель нанесения покрытий – устранение отражений окружающих предметов в стекле экрана, которые мешают при работе. Это так называемые антиотражающие покрытия (anti-reflection, AR). Для уменьшения эффекта отражения поверхность экрана должна быть матовой. Один из способов получения такой поверхности – травление стекла для получения не зеркального, а диффузного отражения (Диффузным называют отражение, при котором падающий свет отражается не под углом падения, а во все стороны). Однако при этом свет от люминофорных элементов также диффузно рассеивается, изображение становится расплывчатым и теряет яркость. В последнее время для получения антиотражающих покрытий используют тонкий слой двуокиси кремния (Silica – кварц), на котором травятся профилированные горизонтальные канавки, препятствующие попаданию отражения внешних предметов в поле зрения пользователя (при нормальном положении его около монитора). При этом подбирают такой профиль канавок, чтобы ослабление и рассеивание полезного сигнала было максимальным.

Информация о работе Монитор как зеркало персонального компьютера