Автор работы: Пользователь скрыл имя, 13 Октября 2013 в 11:30, реферат
Мультимедиа (multimedia) - это современная компьютерная информационная технология, позволяющая объединить в компьютерной системе текст, звук, видеоизображение, графическое изображение и анимацию(мультипликацию). Мультимедиа - это сумма технологий, позволяющих компьютеру вводить, обрабатывать, хранить, передавать и отображать (выводить) такие типы данных как текст, графика, анимация, оцифрованные неподвижные изображения, видео, звук и речь.
ВВЕДЕНИЕ
Мультимедиа (multimedia) - это современная компьютерная информационная технология, позволяющая объединить в компьютерной системе текст, звук, видеоизображение, графическое изображение и анимацию(мультипликацию). Мультимедиа - это сумма технологий, позволяющих компьютеру вводить, обрабатывать, хранить, передавать и отображать (выводить) такие типы данных как текст, графика, анимация, оцифрованные неподвижные изображения, видео, звук и речь.
Для построения мультимедиа
системы необходима дополнительная
аппаратная поддержка: аналого-цифровые
и цифро-аналоговые преобразователи
для перевода аналоговых аудио и
видео сигналов в цифровой эквивалент
и обратно, видеопроцессоры для
преобразования обычных телевизионных
сигналов к виду, воспроизводимому
электронно-лучевой трубкой
С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Компакт - диски со звуковыми файлами, подготовка мультимедиа презентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта Рис.2.
Мы все уже привыкли к тому, что современный персональный компьютер может издавать весьма разнообразные звуки. Вначале они могли только гудеть и пищать на разные лады, затем появились программы, произносящие вполне отчетливые слова и играющие отдаленное подобие музыки, слушаемой через водосточную трубу; компьютерные игры довольно быстро научились даже при помощи встроенного громкоговорителя (рис.1) издавать что-то вроде выстрелов и взрывов. А теперь повсеместное распространение недорогих звуковых карт позволило воспроизводить с их помощью любые теоретически возможные звуки. Однако в большинстве случаев мы с вами слышим только те звуки, которые были, как говорится, заложены при разработке той или иной программы, а между тем многим хочется гораздо большего. Все это вполне возможно - при наличии требуемых аппаратных средств и/или программ, а главное - знаний о способах извлечения нужных звуков из такого вроде бы немузыкального устройства, как компьютер, так как компьютер по первоначальному определению это устройство для хранения, обработки и передачи информации.
Рис.1.
Встроенный динамик PC-Speaker.
Рис.2.
Мультимедийный комплекс.
Компьютеры не задумывались
своими создателями как устройства
для занятий музыкой. Их изначальное
предназначение типично для любой
полезной машины - освободить человека
от тяжелой и монотонной работы.
В данном случае речь идет об умственной
деятельности рутинного характера,
связанной с громоздкими
Целью курсовой работы является закрепление и углубление теоретических знаний и приобретение практических навыков по изучаемой дисциплине и смежным дисциплинам.
Задача данной курсовой работы – рассказать о наиболее известных программах для работы со звуком, об их преимуществах, показать простоту работы с профессиональным программным обеспечением. Научиться работать с наиболее популярным музыкальным программным обеспечением.
1. ОБЗОР ЗВУКОВЫХ ВОЗМОЖНОСТЕЙ ПК
1.1. Возможности встроенного динамика (
PC-
Speaker)
Представим себе батарейку, которая через регулятор (для удобства - прямолинейный, а не круглый) подключена к динамику акустической системы. При перемещении регулятора диффузор динамика будет аналогично перемещаться между своим нейтральным положением и точкой максимального отклонения, в точности повторяя движения ползунка и изменение электрического тока в цепи. В таком случае говорят, что имеет место аналоговая передача звука, которая используется почти во всей звуковой аппаратуре. Таким образом, перемещая ползунок с нужной скоростью, мы можем заставить динамик издать любой нужный нам звук - вся проблема только в скорости перемещения ползунка.
В компьютерах, как известно,
используется цифровой принцип передачи
информации: электрические сигналы
могут принимать только два состояния
- 0 и 1, что соответствует минимальному
и максимальному уровням
Однако кое-что все-таки можно сделать, вспомнив, что диффузор динамика имеет инерцию и из-за нее не может перемещаться со скоростью, сравнимой со скоростью изменения цифровых сигналов в компьютере. Если подать на него цифровой сигнал из равномерно меняющихся 0 и 1 с частотой более 20 килогерц - диффузор будет излучать неслышимый ультразвук, сила которого будет очень быстро падать с ростом частоты, и уже на нескольких десятках килогерц диффузор практически перестанет двигаться. Однако если изменение между 0 и 1 будет неравномерным, то диффузор уже не сможет оставаться на месте, однако и не будет колебаться в точном соответствии с цифровым сигналом. Можно сказать, что удержание одного из уровней на выходе схемы ускоряет движение диффузора в выбранном направлении, а смена уровня на противоположный - тормозит его, а при удержании нового уровня в течение длительного времени диффузор начнет двигаться в противоположном направлении. Этот способ управления называется широтно-импульсной модуляцией (ШИМ).
Таким образом, если достаточно
искусно переключать цифровые уровни
на схеме управления динамиком, то в
принципе из него можно получить произвольные
и чистые звуки. Однако на практике
это возможно лишь при условии
точного знания момента инерции
диффузора, параметров усилителя мощности
и очень высокой (в идеале - бесконечной)
точности управления сменой уровней. Поэтому
описанный метод получил
1.2. Преобразователи АЦП и ЦАП
Наиболее естественным способом
"подружить" цифровой компьютер
с его "рваной" импульсной системой
передачи информации, и непрерывный
реальный мир является использование
преобразователей аналоговых сигналов
в цифровые и обратно, которые
и называются аналогово-цифровыми
и цифро-аналоговыми
Для преобразования в цифровой код аналоговый сигнал приходится подвергать дискретизации - разбиению на фиксированные участки во времени и на ряд фиксированных величин - по уровню. Каждый элементарный участок сигнала кодируется одним числом, величина которого пропорциональна среднему уровню сигнала на этом участке; такое число называется отсчетом. Числа появляются на выходе АЦП синхронно с изменением сигнала на входе; точность преобразования будет тем выше, чем выше частота следования отсчетов и чем больше используется фиксированных значений уровня. Частота следования отсчетов называется частотой дискретизации, а диапазон значений отсчета определяется разрядностью его двоичного представления.
Выбор частоты дискретизации важен в первую очередь для передачи частотного диапазона сигнала - при слишком низкой частоте звук становится глухим и неразборчивым. Чаще всего для хорошей передачи звука достаточно частоты, вдвое большей максимальной частоты исходного сигнала, хотя для достижения высокого качества используется трех - пятикратное превышение. А разрядность влияет прежде всего на количество искажений и шумов, вносимых в звук - при недостаточной точности отсчетов звук становится резким и неприятным, как внутри металлической трубы.
В популярных сейчас бытовых проигрывателях компакт-дисков используется частота дискретизации 44.1 кГц и отсчеты в 16 двоичных разрядов (65536 фиксированных уровней). В цифровых телефонных линиях применяется 8-разрядная (256 уровней) оцифровка на 8 кГц, а в студийных системах обработки звука - 24-разрядная (16777216 уровней) с частотой 96 кГц. Понятно, что с ростом частоты дискретизации и разрядности отсчета растет и объем данных, занимаемый звуком. Например, один компакт-диск вмещает 74 минуты стереозвучания, однако при записи на нем звука в монофоническом телефонном формате время непрерывного звучания составит более суток.
Самый простой ЦАП делается
при помощи так называемой резистивной
матрицы, когда все разряды двоичного
числа, представляющего отсчет, через
резисторы с различным
Лет десять назад на компьютерах
IBM PC подобные 8-разрядные ЦАП делались
при помощи параллельного порта
принтера, имеющего как раз 8 линий
данных, а при использовании
Сейчас выпускается широчайший
ассортимент звуковых адаптеров, или
карт, для всех видов персональных
компьютеров, а во многих моделях
они являются компонентом системной
платы. Современный звуковой адаптер
содержит 16-разрядные стереофонические
ЦАП и АЦП, работающие на частоте
5..48 кГц, которые передают и получают
цифровой звук по каналам прямого
доступа к памяти (DMA), без прямого
участия программ, которым остается
только вовремя забирать готовый
оцифрованный фрагмент с АЦП, или
подавать очередной цифровой фрагмент
на ЦАП. Многие адаптеры могут записывать
и воспроизводить звук одновременно,
и программа при должном
1.3. Процессоры
DSP
(
Digital Signal Processing)
В принципе DSP (Рис.3) нужен чтобы разгрузить центральный процессор (CPU) компьютера, да и вообще поменьше от него зависеть. Это делает работу платы устойчивей и позволяет избежать многих проблем совместимости с разными компьютерами.
Обработка цифрового звука - отдельная и весьма обширная область, которая, по
Рис.3.
Процессор-DSP.
сути, сводится к выполнению над числами-отсчетами тех же математических операций, которые в аналоговых устройствах выполняются электронными схемами. Например, усилению или ослаблению соответствует умножение или деление отсчетов, смешиванию двух сигналов - попарное сложение их отсчетов, фазовому сдвигу - задержка одних отсчетов относительно других. Единственная проблема состоит в том, что для выполнения сложных преобразований вроде фильтрования или модуляции требуется очень большое число элементарных числовых операций, которое рядовой компьютер не в состоянии делать синхронно с поступающим сигналом (как говорят - в реальном времени). В таких случаях либо применяются специальные цифровые сигнальные процессоры (DSP), либо обработка проводится основным процессором, но после предварительной записи звука в память или на жесткий диск, с воспроизведением оттуда после окончания обработки. Эта так называемая нелинейная обработка занимает больше времени и не позволяет тут же слышать результат, однако никак не ограничена по сложности и глубине воздействия на звук.
Частным случаем обработки
является простой монтаж фонограмм,
с которым постоянно
Однако компьютер способен
не только сохранить и воспроизвести
однажды записанный в него звук,
даже после цифровой обработки - он
может создавать совершенно новые
звуки при помощи аппаратного
или программного синтеза. Простейший
метод синтеза состоит в