Автор работы: Пользователь скрыл имя, 03 Сентября 2013 в 03:29, курсовая работа
В настоящее время идут активные споры на счёт проблемы возможности создания искусственного интеллекта. Многие считают, что создание ИИ унизит человеческое достоинство. Возможности ИИ с вопросами о совершенствовании и развитии человеческого разума смешивать нельзя.
В современном мире ИИ используется практически повсеместно, это создаёт предпосылки для нового толчка прогресса. Искусственный разум позволяет автоматизировать производство, а значит и продуктивность труда. Но кибернетика имея огромное число плюсов, также имеет свои минусы, которые требуют очень пристального внимания человечества. Эти минусы связаны с опасностью, возникающей при работе с искусственным интеллектом.
Введение………………………………………………………………………………...…3
Основная часть……………………………………………………………………….…....5
1Искусственный интеллект………………………………………………………………5
1.1Задание…………………………………………………………………………..5
1.2 Современные области исследований в искусственном интеллекте………...5
1.3Подход, основанный на использовании теста Тьюринга…………………….7
1.4 Искусственный интеллект как вершина развития информационных технологий…………………………………………………………………………………9
1.5 Возможная стратегия и план создания искусственного интеллекта………10
1.6 Будущее искусственного интеллекта………………………………………..11
2Области применения искусственного интеллекта……………………………………14
2.1Области применения…………………………………………………………..14
2.2 Применение нейронных сетей……………………………………………….16
2.3 Искусственный интеллект в вооруженных силах………………………….18
Заключение………………………………………………………………………………21
Глоссарий…………………………………………………………………………23
Список использованных источников……………………………………………26
Приложения……………………………………………………………………….
1.6 Будущее искусственного интеллекта
Индустрия информационных технологий - одна из наиболее динамично развивающихся сфер жизни. В соответствии с законом Мура, в 2020 году компьютеры достигнут мощности человеческого мозга, т.к. смогут выполнять 20 квадриллионов (т.е. 20.000.000 миллиардов) операций в секунду, а к 2060 году, как считают некоторые футурологи, компьютер сравняется по силе разума со всем человечеством. Впрочем, еще в 1994 году ПК на базе процессора Intel Pentium со смехотворной, по нынешним временам, частотой 90 МГц обыграл в серии турниров по шахматам нескольких сильнейших гроссмейстеров мира, включая действующего чемпиона планеты - Гарри Каспарова.
Тот же Гордон Мур в
середине 90-х годов так сравнивал
темпы развития микропроцессорных
технологий и автомобильной
Сегодняшние информационные технологии уже способны на многое. В последнее время активно развивается разработка телематических терминалов (бортовых систем управления) для автомобилей. По данным аналитической компании Forrester Research, к 2006 году телематическими терминалами для обработки и передачи информации будет оборудовано около 80% от общего числа новых машин.
Уже сегодня существуют реальные возможности применения такого рода технологий в практически любом автомобиле. Например, телефонная гарнитура BlueConnect производства компании Johnson Controls - интегрированный автомодуль hands-free на базе процессоров Intel PXA250 и Intel PXA210 - позволяет водителю выполнять самые разнообразные действия, активизируемые голосом, с помощью сотового телефона и технологии Bluetooth.
Еще одним устройством, в котором применены новые процессоры, является мультимедийная автомобильная платформа, которая предоставляет пассажирам автономный доступ к таким ресурсам, как видео в формате DVD и аудиозаписям в формате MP3, транслируемым по сети Media Oriented System Transport (MOST).
Автомобилестроение - только одна из
многих сфер жизни, где микропроцессоры
занимают все большее место. Очевидно,
что с каждым годом все более
мощные микропроцессоры будут
Такие транзисторы, имеющие размер всего 20 нанометров, позволят компании Intel к 2007 г. создать процессоры с миллиардом транзисторов, работающие на частоте до 20 ГГц при напряжении питания около 1 вольт. А руководство компании уже говорит о грядущих процессорах с тактовой частотой до 30 ГГц. Предпосылки для производства таких микропроцессоров в Intel уже созданы
Сегодня, например, в Animat Lab разрабатывается проект Psikharpax, где в роботе синтезируются некоторые из адаптивных механизмов и нервных структур, ответственных за пространственную навигацию у крыс. Способности этой крысы-робота будут расти за счет «обучения без учителя», то есть анимат будет сам строить когнитивную карту среды и вырабатывать адаптивные стратегии поведения по механизмам, схожим с теми, что использует мозг крысы. В группе гуманоидной работники (Humanoid Robotics Group) из лаборатории искусственного интеллекта в MIT сегодня разрабатываются обезьяноподобные и мобильные роботы (Kismet, Сосо) с гораздо более сложным, чем у первых насекомоподобных роботов, поведенческим репертуаром, куда, в частности, входят способности к социальным взаимодействиям и аффективным эмоциональным реакциям.
Кроме того, эксперименты с такими роботами могут стимулировать появление новых идей, проливающих свет на принципы адаптивного поведения. Как минимум, такие эксперименты позволяют отсекать заведомо нереалистичные теории. Моделирование как средство элиминации ошибок - мощный инструмент в познании работы мозга. Поэтому многие нейробиологи настаивают на том, что теории работы мозга должны быть сформулированы алгоритмично, чтобы допускать моделирование. Один из ведущих нейробиологов-теоретиков, Нобелевский лауреат Джеральд Эделман стал и одним из пионеров эволюционного обучения роботов. Эделман, создавший фундаментальную теорию работы мозга и биологических основ сознания, в своем институте в Калифорнии (Neuroscience Institute) разрабатывает серию роботов NOMAD. Эти роботы имеют еще и родовое имя «Дарвин». Каждый новый «Дарвин» появляется на свет практически необученным, но, сталкиваясь с объектами внешнего мира и имея какое-нибудь врожденное предпочтение, начинает вырабатывать собственные абстрактные категории. У робота появляются знания, которые он может использовать и в других задачах. То есть начинает работать один из принципов, по которым, судя по всему, шла эволюция механизмов интеллекта.
2.1 Области применения
Какие возможности предоставляет искусственный интеллект в наши дни? Краткий ответ на этот вопрос сформулировать сложно, поскольку в этом научном направлении существует слишком много подобластей, в которых выполняется очень много исследований. Ниже в качестве примеров перечислено лишь несколько приложений.
-Автономное планирование и составление расписаний. Работающая на удалении в сотни миллионов километров от Земли программа Remote Agent агентства NASA стала первой бортовой автономной программой планирования, предназначенной для управления процессами составления расписания операций для космического аппарата. Программа Remote Agent вырабатывала планы на основе целей высокого уровня, задаваемых с Земли, а также контролировала работу космического аппарата в ходе выполнения планов: обнаруживала, диагностировала и устраняла неполадки по мере их возникновения.
-Ведение игр. Программа Deep Blue компании IBM стала первой компьютерной программой, которой удалось победить чемпиона мира в шахматном матче, после того как она обыграла Гарри Каспарова со счетом 3,5:2,5 в показательном матче. Каспаров заявил, что ощущал напротив себя за шахматной доской присутствие «интеллекта нового типа». Журнал Newsweek описал этот матч под заголовком «Последний оборонительный рубеж мозга». Стоимость акций IBM выросла на 18 миллиардов долларов.
-Автономное управление. Система компьютерного зрения Alvinn была обучена вождению автомобиля, придерживаясь определенной полосы движения. В университете CMU эта система была размещена в микроавтобусе, управляемом компьютером NavLab, и использовалось для проезда по Соединенным Штатам; на протяжении 2850 миль система обеспечивала рулевое управление автомобилем в течение 98% времени. Человек брал на себя управление лишь в течение остальных 2%, главным образом на выездных пандусах. Компьютер NavLab был оборудован видеокамерами, которые передавали изображения дороги в систему Alvinn, а затем эта система вычисляла наилучшее направление движения, основываясь на опыте, полученном в предыдущих учебных пробегах.
-Диагностика. Медицинские диагностические программы, основанные на вероятностном анализе, сумели достичь уровня опытного врача в нескольких областях медицины. Хекерман описал случай, когда ведущий специалист в области патологии лимфатических узлов не согласился с диагнозом программы в особо сложном случае. Создатели программы предложили, чтобы этот врач запросил у компьютера пояснения по поводу данного диагноза. Машина указала основные факторы, повлиявшие на ее решение, и объяснила нюансы взаимодействия нескольких симптомов, наблюдавшихся в данном случае. В конечном итоге эксперт согласился с решением программы.
-Планирование снабжения.Во время кризиса в Персидском заливе в 1991 году в армии США была развернута система DART (Dynamic Analysis and Replanning) для обеспечения автоматизированного планирования поставок и составления графиков перевозок. Работа этой системы охватывала одновременно до 50 000 автомобилей, единиц груза и людей; в ней приходилось учитывать пункты отправления и назначения, маршруты, а также устранять конфликты между всеми параметрами. Методы планирования на основе искусственного интеллекта позволяли вырабатывать в течение считанных часов такие планы, для составления которых старыми методами потребовались бы недели. Представители агентства DARPA (Defense Advanced Research Project Agency — Управление перспективных исследовательских программ) заявили, что одно лишь это приложение сторицей окупило тридцатилетние инвестиции в искусственный интеллект, сделанные этим агентством.
-Робототехника.Многие хирурги теперь
используют роботов-ассистентов в микрохирургии.
Например, HipNav — это система, в которой
используются методы компьютерного зрения
для создания трехмерной модели анатомии
внутренних органов пациента, а затем
применяется робототехническое управление
для руководства процессом вставки протеза,
заменяющего тазобедренный сустав.
Понимание естественного языка и решение
задач. Программа Proverb — это компьютерная
программа, которая решает кроссворды
намного лучше, чем большинство людей;
в ней используются ограничения, определяющие
состав возможных заполнителей слов, большая
база с данными о встречавшихся ранее
кроссвордах, а также множество различных
источников информации, включая словари
и оперативные базы данных, таких как списки
кинофильмов и актеров, которые играли
в этих фильмах. Например, эта программа
способна определить, что одним из решений,
подходящих для ключа «Nice Story», является
слово «ETAGE», поскольку ее база данных
содержит пару ключ — решение «Story in France/ETAGE»,
а сама программа распознает, что шаблоны
«Nice X» и «X in France» часто имеют одно и то
же решение. Программа не знает, что Nice
(Ницца) — город во Франции, но способна
разгадать эту головоломку.
Выше приведено лишь несколько примеров систем искусственного интеллекта, которые существуют в настоящее время.
2.2 Применение нейронных сетей
Нейронные сети применяются везде, где необходимо решить задачи связанные с управлением, прогнозированием, а также с классификацией. Такое активнейшее использование обуславливается следующими причинами:
Широкие возможности. Для воспроизводства очень сложных зависимостей используются мощные методы моделирования, которые реализуются с помощью нейронных сетей. Весьма длительное время в большинстве областей применялось линейное моделирование, оно являлось основным методом, так как для него разрабатывались различные хорошо оптимизированные процедуры. Линейные модели в задачах работают плохо там, где не очень хорошо себя проявляет линейная аппроксимация. А также нейронные сети не позволяют оперировать в случае большого числа переменных благодаря предотвращению «проклятия размерности».
Простота в использовании. Нейронные сети способны обучаться на примерах. Человек, пользующийся нейронной сетью, выбирает необходимые данные, далее ему даётся возможность запуска алгоритма обучения, который воспримет данные автоматически. От пользователя, разумеется, требуются какие-то эвристические знания о том, как нужно отобрать и подготовить данные, выбрать необходимую архитектуру сети, а также обработать результаты. Для того чтобы использовать нейронные сети, необходим, гораздо меньший уровень знаний, чем для использования традиционных методов статистики.
Нейронные сети очень привлекают к себе внимание тем, что они основаны на простой модели нервной системы. В недалёком будущем развитие таких моделей действительно может послужить созданию мыслящих машин (компьютеров). Существует система ST Neural Networks которая способна создавать простые нейронные сети, что является находкой для специалистов по прикладной статистике.
Задачи, которые решают нейронные сети, определяются тем, как сеть функционирует и обучается. Нейронная сеть, решая определённые задачи, выдаёт и принимает значения. Сеть применяют для того, чтобы из имеющийся, известной информации получить некоторую не известную информацию. Примеры подобных задач:
Прогнозирование на фондовом рынке.
Можно спрогнозировать цену акции на завтрашний день, зная цены акций за последнюю неделю.
Предоставление кредита.
Частное лицо обратилось в банк. Нужно определить, высока ли степень риска предоставления кредита.
Управление. Необходимо определись действия робота, для того чтобы он достиг своей цели благодаря установленной на нём камере.
Далеко не все задачи можно решить, применяя нейронные сети. Если вы решили определить результат лотереи, зная свой рост, то ничего не получится, так как эти вещи никакого отношения друг к другу не имеют. Если тираж проводится без обмана, то нет такой информации, которая могла бы предсказать итог игры с точностью.
Ещё одно не менее важное условие применения нейронных сетей: Необходимо с уверенностью знать, что между известными входными и неизвестными выходными значениями имеется связь. Эта связь может быть искажена шумом, но она должна существовать.
Нейронная сеть обычно используется, когда неизвестны точные виды связей между выходами и входами, - в случае если они известны, то связь можно смоделировать непосредственно. Ещё одна не менее важная особенность нейронных сетей это обучение сети. Для обучения нейронных сетей применяются алгоритмы двух типов: управляемое и не управляемое. Чаще всего применяется управляемое обучение.
Для управляемого обучения пользователи должны заранее подготовить пакет обучающих данных. Они из себя представляют примеры входов и выходов. Сети учатся устанавливать связи между ними. Такие обучающие данные, как правило, берутся из истории. В примерах, которые рассмотрены выше, такими данными могут послужить предыдущие цены акций, информация о прошлых заемщиках - как они выполнили свои обязательства перед банком.
Далее нейронная сеть обучается при помощи определённого алгоритма управляемого обучения, для того чтобы свести ошибку прогноза на нет. В случае если уровень обучения сети высок, она способна смоделировать неизвестную функцию, которая связывает входные и выходные переменные. В будущем такую сеть можно использовать для прогнозирования различных ситуаций с неизвестными выходными значениями.
Информация о работе Области применения искусственного интелекта