Автор работы: Пользователь скрыл имя, 30 Ноября 2014 в 11:28, лекция
Человечество стремительно вступает в принципиально новую для него информационную эпоху. Существенным образом меняются все слагаемые образа жизни людей. В современном обществе уровень информатизации характеризует уровень развития государства. Начавшийся ХХI век специалисты называют веком компьютерных технологий. Их революционное воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей. Многие развитые и развивающиеся страны в полной мере осознали те колоссальные преимущества, которые несет с собой развитие и распространение информационно-коммуникационных технологий.
19.11.14 421 группа ОПИС
РЕЛЯЦИОННАЯ МОДЕЛЬ ДАННЫХ
Введение
Человечество стремительно вступает в принципиально новую для него информационную эпоху. Существенным образом меняются все слагаемые образа жизни людей. В современном обществе уровень информатизации характеризует уровень развития государства. Начавшийся ХХI век специалисты называют веком компьютерных технологий. Их революционное воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей. Многие развитые и развивающиеся страны в полной мере осознали те колоссальные преимущества, которые несет с собой развитие и распространение информационно-коммуникационных технологий. Не у кого не вызывает сомнения тот факт, что движение к информационному обществу - это путь в будущее человеческой цивилизации.
В соответствии с реляционной моделью база данных представляется в виде совокупности таблиц, над которыми могут выполняться операции, формулируемые в терминах реляционной алгебры и реляционного исчисления. В реляционной модели операции над объектами базы данных имеют теоретико-множественный характер. Концепции реляционной модели данных связаны с именем известного специалиста в области систем баз данных Е. Кодда. Именно поэтому реляционную модель данных часто называют моделью Кодда.
Ядром любой базы данных является модель данных. Модель данных представляет собой множество структур данных, ограничений целостности и операций манипулирования данными. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними.
Модель данных - совокупность структур данных и операций их обработки.
Модели данных определяются:
СУБД основывается на использовании иерархической, сетевой или реляционной модели, на комбинации этих моделей или на некотором их подмножестве.
Рассмотрим 3 основных типа моделей данных: иерархическую, сетевую и реляционную.
Иерархическая модель данных
а) Иерархическая структура представляет совокупность элементов, связанных между собой по определённым правилам. Объекты, связанные иерархическими отношениями, образуют ориентированный граф (перевёрнутое дерево), вид которого представлен на рисунке 1.
К основным понятиям иерархической структуры относятся: уровень, элемент (узел), связь.
Узел - это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне. Иерархическое дерево имеет только одну вершину (корень дерева), не подчинённую никакой другой вершине и находящуюся на самом верхнем (первом) уровне. Зависимые (подчинённые) узлы находятся на втором, третьем и т.д. уровнях. Количество деревьев в базах данных определяется числом корневых записей. К каждойЗаписи базы данных существует только 1 иерархический путь от корневой записи. Например, как видно на рисунке 1 для записи С4 путь проходит через записи А и В3.
Примером сложной сетевой структуры может служить структура базы данных, содержащей сведения о студентах, участвующих в научно - исследовательских работах (НИР). Возможно участие одного студента в нескольких НИР, а также участие нескольких студентов в разработке одной НИР. Графическое изображение описанной в примере сетевой структуры, состоящей только из двух типов записей, показано на рисунке 4. Единственное отношение представляет собой сложную связь между записями в обоих направлениях.
с) Операции над данными сетевой модели данных:
Особенность сетевой модели данных: возможность осуществления навигации по связям данных, т.е. переход от просмотра реквизитов экземпляра одного типа записи к просмотру реквизитов экземпляра, связанного типом записи. Пользователю предоставляется возможность многокритериального анализа базы данных без непосредственной формализации своих информационных потребностей через формирование запросов на языке, встроенном в СУБД.
Другая сильная сторона сетевой модели данных - использование множественных типов данных для описания атрибутов информации объектов. Это позволяет создавать информационные структуры, которые представляют собой табличную форму данных.Не смотря на развитие сетевой модели данных, не получилось создать языковых программных средств на их основе, которые позволили бы в прикладных информационных системах одинаково описывать данные сетевой организации.
Реляционная модель данных.
Понятие реляционной (англ. relation - отношение) связано с разработками известного американского специалиста в области систем баз данных Е. Кодда.
Реляционная модель данных представляет информацию в виде совокупности связанных таблиц, которые называются отношениями или реляциями.
Тип данных - эквивалентно понятию типа данных в алгоритмических языках. Существуют:
Наименьшая единица данных реляционной модели -- это отдельное атомарное (неразложимое) для данной модели значение данных. Доменом называется множество атомарных значений одного и того же типа. Иными словами, домен представляет собой допустимое потенциальное множество значений данного типа. Понятие домена более специфично для баз данных, хотя и имеет некоторые аналогии с диапазонными типами и множествами, имеющимися в ряде языков программирования. В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементу типа данных. Если вычисление этого логического выражения дает результат «истина», то элемент данных является элементом домена.
Следует отметить также семантическую нагрузку понятия домена: данные счита ются сравнимыми только в том случае, когда они относятся к одному домену. Если же значения двух атрибутов берутся из различных доменов, то их сравнение, вероятно, лишено смысла. Понятие домена используется далеко не во всех СУБД. В качестве примера реляци онных баз данных, использующих домены, можно привести Огасle и InterBase.
Атрибуты, схема отношения, схема базы данных
Столбцы отношения называют атрибутами, им присваиваются имена, по которым к ним затем производится обращение.
Список имен атрибутов отношения с указанием имен доменов (или типов, если домены не поддерживаются) называется схемой отношения.
Степень отношения -- это число его атрибутов. Отношение степени один называют унарным, степени два -- бинарным, степени три -- тернарным,..., а степени п -- n-арным.
Схемой базы данных называется множество именованных схем отношений.
Кортеж
Кортеж, соответствующий данной схеме отношения, представляет собой множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. «Значение» является допустимым значением домена данного атрибута (или типа данных, если понятие домена не поддерживается). Тем самым степень кортежа, то есть число элементов в нем, совпадает со степенью соответствующей схемы отношения. Иными словами, кортеж -- это набор именованных значений заданного типа. Схему отношения иногда называют также заголовком отношения, а отношение как набор кортежей -- телом отношения. Понятие схемы отношения напоминает понятие структурного типа данных в языках про граммирования (структура в С/С++, запись в Pascal). Однако в реляционных базах данных имя схемы отношения всегда совпадает с именем соответствующего отношения-экземпляра. В классических реляционных базах данных после определения схемы базы Данных изменяются только отношения-экземпляры. В них могут появляться новые и удаляться или модифицироваться существующие кортежи. Однако во многих реализациях допускается и изменение схемы базы данных: определение новых и изменение существующих схем отношения. Это принято называть эволюцией схемы базы данных.
Ключи отношения
Поскольку отношение с математической точки зрения является множеством, а множества по определению не содержат совпадающих элементов, то никакие два кортежа отношения не могут быть дубликатами друг друга в любой произвольно заданный момент времени. Таким образом, в отношении всегда должен присутствовать некоторый атрибут (или набор атрибутов), однозначно определяющий каждый кортеж отношения и обеспечивающий уникальность строк таблицы. Такой атрибут (или набор атрибутов) называется первичным ключом отношения.
Для каждого отношения свойством уникальности обладает, по крайней мере, полный набор его атрибутов. Однако требуется обеспечить и условие минимальности. Поэтому, как правило, в отношении всегда имеется один атрибут, обладающий свойством уникальности и являющийся первичным ключом.
В зависимости от количества атрибутов, входящих в ключ, различают простые и сложные (или составные) ключи.
Простой ключ -- ключ, содержащий только один атрибут. В общем случае операции объединения выполняются быстрее в том случае, когда в качестве ключаис пользуется самый короткий и самый простой из возможных типов данных. С этой точки зрения наилучшим образом подходит целочисленный тип, который имеет аппаратную поддержку для выполнения над ним логических операций.
Сложный или составной ключ -- ключ, состоящий из нескольких атрибутов. Набор атрибутов, обладающий свойством уникальности, но не обладающий минимальностью, называется суперключом. Суперключ -- сложный (составной) ключ с большим числом столбцов, чем необходимо для того, чтобы быть уникальным идентификатором. Такие ключи нередко используются на практике, так как избыточность может оказаться полезной пользователю.
В зависимости от того, содержит ли атрибут, являющийся первичным ключом, какую-либо информацию, различают искусственные и естественные ключи.
Искусственный или суррогатный ключ -- ключ, созданный самой СУБД или пользователем с помощью некоторой процедуры, который сам по себе не содержит ин формации. Искусственный ключ используется для создания уникальных идентификаторов строк, когда сущность должна быть описана полностью, чтобы однозначно идентифицировать конкретный элемент. Искусственный ключ часто используют вместо значимого сложного ключа, который является слишком громоздким, чтобы использоваться в реальной базе данных. Система поддерживает искусственный ключ, но он никогда не показывается пользователю.
Естественный ключ -- ключ, в который включены значимые атрибуты и который, таким образом, содержит информацию.
Каждый из типов первичных ключей имеет свои преимущества и недостатки; их обсуждению посвящено большое количество публикаций. Мы не будем проводить подробное их сравнение, а отметим лишь основные плюсы и минусы каждого из видов ключей.
Основными достоинствами естественных ключей является то, что они несут вполне определенную информацию и их использование не приводит к необходимости добавлять в таблицы атрибуты, значения которых не имеют никакого смысла и используются лишь для связи между отношениями. Иными словами, использование естественных ключей позволяет получить более компактную форму таблиц (в которых не будет избыточных, неинформативных данных) и более естественные связи между ними.
Основным же недостатком естественных ключей является то, что их использование весьма затруднительно в случае изменчивости предметной области. Следует пони мать, что значения атрибутов первичного ключа не должны изменяться. То есть однажды заданное значение первичного ключа для кортежа не может быть позже изменено. Такое требование ставится в основном для поддержания целостности базы данных. Связь между отношениями обычно устанавливается именно по пер вичномуключу, и его изменение приведет к нарушению этих связей или к необходимости изменения записей в нескольких таблицах. Даже в сравнительно простых базах данных это может вызвать ряд трудноразрешимых проблем. В некоторых реляционных СУБД допускается изменение первичного ключа. Иногда это бывает действительно полезно. Однако прибегать к этому следует лишь в случае крайней необходимости.
Типичным примером изменчивой предметной области, в которой для сущности невозможно определить неизменный естественный ключ, является любая область, где в качестве сущности выступает человек. Действительно, невозможно определить для человека набор атрибутов, которые были бы уникальны и неизменны на протяжении всей его жизни.
Второй, довольно существенный недостаток естественных ключей состоит в том, что, как правило, уникальные естественные ключи являются составными и содержат строковые атрибуты. Как уже отмечалось выше, максимальная скорость выполнения операций над данными обеспечивается при использовании простых целочисленных ключей. Таким образом, с точки зрения быстродействия системы естественные ключи часто оказываются неоптимальными.
Оба недостатка естественных ключей можно преодолеть, определив в отношениях суррогатные ключи, представляющие собой некоторый универсальный атрибут, как правило, целочисленного типа, который не зависит ни от предметной области, ни, тем более, от структуры отношения, которое он идентифицирует. Таким образом, можно обеспечить уникальность и неизменность ключа (раз он никаким образом не зависит от предметной области, то никогда не возникнет необходимость изменять его). Однако за это приходится платить избыточностью данных в таблицах. Следует заметить, что во многих практических реализациях реляционных СУБД до пускается нарушение свойства уникальности кортежей для промежуточных отношений, порождаемых неявно при выполнении запросов. Такие отношения являются не множествами, а мультимножествами, что в ряде случаев позволяет добиться определенных преимуществ, но иногда приводит к серьезным проблемам.