Типы вычислительных систем

Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 09:42, курсовая работа

Краткое описание

Важную роль в развитии вычислительной техники, средств обработки информации и управляющих устройств, являющихся основой автоматизации в различных сферах человеческой деятельности, сыграло появление микропроцессоров. Неослабевающий интерес к микропроцессорам объясняется такими их свойствами, как низкая стоимость, высокая надежность, компактность и значительные вычислительные и функциональные возможности, позволяющие применять их даже там, где использование средств цифровой обработки информации ранее считалось нецелесообразным.
В любой стране достижение высоких экономических и социальных результатов в значительной степени зависит от масштабов и темпов информатизации общества, использования информационных технологий во всех сферах человеческой деятельности.

Содержание

Введение………………………………………………………………………………..…3
1. Вычислительные системы……………………………………………………………6
1.1 История вычислительной техники…………………………………………………6
1.2 Основные характеристики………………………………………………….………8
2. Классификация вычислительных систем……………………………………………10
2.1 Принципы построения………………………………………………………………10
2.2 Архитектура вычислительных систем………………………………………..……14
3. Типы вычислительных систем……………………………………………………….16
Заключение………………………………………………………………………………23
Глоссарий……………………………………………………………………………….26
Список использованных источников…………………………

Вложенные файлы: 1 файл

Тогушев С.С._Типы вычислительных систем.doc

— 168.00 Кб (Скачать файл)

Критический порог определяется точкой пересечения двух приведенных зависимостей. Кроме выигрыша в стоимости следует учитывать и дополнительные преимущества. Наличие нескольких вычислителей в системе позволяет совершенно по-новому решать проблемы надежности, достоверности результатов обработки, резервирования, централизации хранения и обработки данных, децентрализации управления и т.д.

В настоящее время накоплен большой  практический опыт в разработке и  использовании ВС самого разнообразного применения. Эти системы очень  сильно отличаются друг от друга своими возможностями и характеристиками. Различия наблюдаются уже на уровне структуры. Существует большое количество признаков, по которым классифицируют вычислительные системы: по целевому назначению и выполняемым функциям, по типам и числу ЭВМ или процессоров, по архитектуре системы, режимам работы, методам управления элементами системы, степени разобщенности элементов вычислительной системы и др. Однако основными из них являются признаки структурной и функциональной организации вычислительной системы.

По назначению вычислительные системы  делят на универсальные и специализированные. Универсальные ВС предназначаются для решения самых различных задач. Специализированные системы ориентированы на решение узкого класса задач.

По типу вычислительные системы  разделяются на многомашинные и  многопроцессорные ВС. Многомашинные вычислительные системы (ММС) появились исторически первыми. Основные различия ММС заключаются, как правило, в организации связи и обмене информацией между ЭВМ комплекса. Каждая из них сохраняет возможность автономной работы и управляется собственной ОС. Любая другая подключаемая ЭВМ комплекса рассматривается как периферийное специальное оборудование. В зависимости от территориальной разобщенности ЭВМ и используемых средств сопряжения обеспечивается различная оперативность их информационного взаимодействия Многопроцессорные системы (МПС) строятся при объединении нескольких процессоров. В качестве единого ресурса они имеют оперативную память (ООП). Параллельная работа процессоров и использование ООП обеспечивается под управлением единой операционной системы. По сравнению с ММС здесь достигается наивысшая оперативность взаимодействия вычислителей-процессоров. Многие исследователи считают, что использование МПС является основным магистральным путем развития вычислительной техники новых поколений.

Однако МПС имеет и существенные недостатки. Они, в первую очередь, связаны с ресурсами ООП. При большом количестве комплексируемых процессоров возможно возникновение конфликтных ситуаций, когда несколько процессоров обращаются с операциями типа «чтение» и «запись» к одним и тем же областям памяти. Помимо процессоров к ООП также подключаются все каналы (процессоры ввода-вывода), средства измерения времени и т.д. Поэтому вторым серьезным недостатком МПС является проблема коммутации абонентов и доступа их к ООП. От того, насколько удачно решаются эти проблемы, и зависит эффективность применения МПС. Это решение должно обеспечиваться аппаратурно-программными средствами. Процедуры взаимодействия очень усложняют структуру ОС МПС. Накопленный опыт построения подобных систем показал, что они эффективны при небольшом числе комплексируемых процессоров.

По типу ЭВМ или процессоров, используемых для построения ВС, различают  однородные и неоднородные системы. Однородные системы предполагают объединение однотипных ЭВМ (процессоров), неоднородные – разнотипных. В однородных системах значительно упрощается разработка и обслуживание технических и программных (в основном ОС) средств. В них обеспечивается возможность стандартизации и унификации соединений и процедур взаимодействия элементов системы.

По степени территориальной  разобщенности вычислительных модулей  ВС делятся на системы совмещенного (сосредоточенного) и распределенного (разобщенного) типов. Обычно такое  деление касается только ММС. Многопроцессорные  системы относятся к системам совмещенного типа. Более того, учитывая успехи микроэлектроники, это совмещение может быть очень глубоким. При появлении новых СБИС появляется возможность иметь в одном кристалле несколько параллельно работающих процессоров.

По методам управления элементами ВС различают централизованные, децентрализованные и со смешанным управлением. Помимо параллельных вычислений, производимых элементами системы, необходимо выделять ресурсы на обеспечение управления этими вычислениями. В централизованных ВС за это отвечает главная, или диспетчерская ЭВМ (процессор). Ее задачей является распределение нагрузки между элементами, выделение ресурсов, контроль состояния ресурсов, координация взаимодействия. Централизованный орган управления в системе может быть жестко фиксирован или эти функции могут передаваться другой ЭВМ (процессору), что способствует повышению надежности системы. Централизованные системы имеют более простые ОС. В децентрализованных системах функции управления распределены между ее элементами. Каждая ЭВМ (процессор) системы сохраняет известную автономию, а необходимое взаимодействие между элементами устанавливается по специальным наборам сигналов. С развитием ВС и, в частности, сетей ЭВМ, интерес к децентрализованным системам постоянно растет. В системах со смешанным управлением совмещаются процедуры централизованного и децентрализованного управления. Перераспределение функций осуществляется в ходе вычислительного процесса, исходя из сложившейся ситуации.

По принципу закрепления вычислительных функций за отдельными ЭВМ (процессорами) различают системы с жестким и плавающим закреплением функций. В зависимости от типа ВС следует решать задачи статического или динамического размещения программных модулей и массивов данных, обеспечивая необходимую гибкость системы и надежность ее функционирования.

По режиму работы ВС различают системы, работающие в оперативном и неоперативном временных режимах. Первые, как правило, используют режим реального времени. Этот режим характеризуется жесткими ограничениями на время решения задач в системе и предполагает высокую степень автоматизации процедур ввода-вывода и обработки данных.

 

2.2 Архитектура вычислительных  систем

 

Основным отличием ВС от компьютеров  является наличие в их структурах нескольких вычислителей (компьютеров  или процессоров). Поэтому они способны выполнять параллельные вычисления. Поскольку ВС появились как параллельные системы, то рассмотрим классификацию архитектур c этой точки зрения. Такая классификация архитектур была предложена М. Флинном в начале 60-х годов. В ее основу заложено два возможных вида параллелизма: независимость потоков заданий (команд), существующих в системе, и независимость (несвязанность) данных, обрабатываемых в каждом потоке. Согласно данной классификации существует четыре основных архитектуры ВС (Приложение А):

1. одиночный поток команд –  одиночный поток данных (ОКОД), в  английской аббревиатуре Single Instruction Single Data, SISD – одиночный поток инструкций  – одиночный поток данных;

2. одиночный поток команд –  множественный поток данных (ОКМД), или Single Instruction Multiple Data, SIMD – одиночный поток инструкций – одиночный поток данных;

3. множественный поток  команд – одиночный поток данных (МКОД), или Multiple Instruction Single Data, MISD –  множественный поток инструкций – множественный поток данных;

4. множественный поток  команд – множественный поток  данных (МКМД), или Multiple Instruction Multiple Data, MIMD -множественный поток инструкций  – множественный поток данных.

Архитектура ОКОД охватывает все однопроцессорные и одномашинные варианты систем, то есть системы с одним вычислителем. Все ЭВМ классической структуры попадают в этот класс. Здесь параллелизм вычислений обеспечивается путем совмещения выполнения операций отдельными блоками АЛУ, а также параллельной работой устройств ввода-вывода информации и процессора. Закономерности организации вычислительного процесса в этих структурах достаточно хорошо изучены.

Архитектура ОКМД предполагает создание структур векторной или  матричной обработки. Системы этого типа обычно строятся как однородные: процессорные элементы, входящие в систему, идентичны, и все они управляются одной и той же последовательностью команд. Однако каждый процессор обрабатывает свой поток данных. Под эту схему хорошо подходят задачи обработки матриц или векторов (массивов), задачи решения систем линейных и нелинейных, алгебраических и дифференциальных уравнений, задачи теории поля и др. В структурах данной архитектуры желательно обеспечивать соединения между процессорами, соответствующие реализуемым математическим зависимостям. Как правило, эти связи напоминают матрицу, в которой каждый процессорный элемент связан с соседними. Векторный или матричный тип вычислений является необходимым атрибутом любой суперЭВМ.

 

 

 

  1. Типы вычислительных систем

 

Классификация уровней  программного параллелизма включает в  себя шесть позиций:

• независимые задания,

• отдельные части  заданий, программы и подпрограммы,

• циклы и итерации,

• операторы и команды,

• фазы отдельных команд.

Для каждой из них имеются  специфические свойства параллельной обработки, апробированные в различных структурах вычислительных систем. Заметим, что данный перечень совершенно не затрагивает этапы выбора алгоритмов решения, на которых могут анализироваться альтернативные алгоритмы (а значит и программы), дающие различные результаты. Для каждого вида параллельных работ имеются структуры вычислительных средств, используемые в различных вычислительных системах. Верхние три уровня, включающие независимые задания, шаги или части заданий и отдельные программы, имеют единое средство параллельной обработки – мультипроцессирование, то есть многопроцессорные вычислительные системы, относящиеся к архитектуре МКМД. Программные циклы и итерации требуют использования векторной обработки (архитектура ОКМД). Операторы и команды, выполняемые ЭВМ, ориентированы на многофункциональную обработку (МКОД). Параллельная обработка фаз последовательно выполняемых команд приводит к организации конвейера команд, что реализовано во всех современных ЭВМ, включая ПК. Рассмотрим возможные структуры вычислительных систем, которые обеспечивают перечисленные виды программного параллелизма.

ОКОД – структуры. Однопроцессорные структуры ВС Можно  перечислить много улучшений  классической структуры ЭВМ, ставших  в настоящее время определенными стандартами при построении новых ЭВМ: иерархическое построение памяти ЭВМ, появление сверхоперативной памяти и кэш-памяти, относительная и косвенная адресация памяти, разделение процессов ввода-вывода и обработки задач, появление систем прерывания и приоритетов и т.д.

Этому также способствовали успехи последних лет в микроэлектронике и системотехнике. Большие интегральные схемы (БИС), к которым относятся  все современные микропроцессоры, аккумулируют в своем составе  самые последние достижения, способствующие увеличению быстродействия и производительности компьютера. Очень многие аппаратные идеи и схемы заимствованы из структур ранних поколений, включая большие ЭВМ и даже суперЭВМ. В аппаратуру серверов и ПК все больше внедряются решения, связанные с параллельными вычислениями, что делает их по существу вычислительными системами.

Например, раньше только суперЭВМ объединяли в своем составе  суперскалярную и векторную (матричную) обработку. Теперь же эти свойства характерны практически для всех современных микропроцессоров различных производителей (Pentium IV фирмы Intel, Athlon – фирмы AMD, Alpha фирмы Dell, Ultra Spark – фирмы Sun, PA-RISC фирмы Hewlett Packard, Power PC фирмы IBM, MIPS фирмы SGI и др.). Суперскалярность обычно присуща RISC-процессорам (Reduced Instruction Set Computing, то есть процессорам с сокращенным набором команд.). Процессоры этого класса имеют значительно больший состав регистров общего назначения – регистров сверхоперативной памяти, что и определяет улучшенные возможности параллельной работы последовательности команд программы. К RISC-архитектуре традиционно относят микропроцессоры фирм AMD и Dell. Упрощенный состав операций микропроцессора обеспечивает более простое построение его ядра и соответственно повышенную скорость работы. В RISC-структурах основу системы команд составляют наиболее употребительные, «короткие» операции типа алгебраического сложения. Сложные операции выполняются как подпрограммы, состоящие из простых операций. Это позволяет значительно упростить внутреннюю структуру процессора, уменьшить фазы дробления конвейерной обработки и увеличить частоту работы конвейера. Но здесь необходимо отметить, что за эффект приходится расплачиваться усложнением процедур обмена данными между регистрами сверхоперативной памяти и кэш-памяти с оперативной памятью. Микропроцессоры фирмы Intel изначально относились к CISC-процессорам (Complete Instruction Set Computing – вычисления с полной системой команд). В компьютерах этой группы большую долю команд составляют команды типа «память-память», в которых операнды и результаты операций находятся в оперативной памяти. Время обращения к памяти и время вычислений соотносится примерно 5:1. В RISC-машинах с большой сверхоперативной памятью большой удельный вес составляют операции «регистр-регистр», и отношение времени обращения к памяти к времени вычислений составляет 2 к 1.

Эволюция микропроцессоров показывает, что постепенно оба направления  начинают сближаться, что и в схемах Pentium’ов последних выпусков отчетливо  формируется RISC-ядро и расширяется сверхоперативная память. Однако испытания самых мощных микропроцессоров фирм Intel и AMD показали, что ядро Athlon примерно в два раза быстрее, чем у Pentium, но более медленная (примерно вдвое) кэш-память. Суперскалярность затрагивает и организацию конвейера последовательно выполняемых команд: формирование адреса команды, выбор команды, формирование адресов и выбор операндов, выполнение команды, запись результата. Однако примитивная организация памяти компьютеров (память линейна и одномерна) не позволяет организовывать длинные и эффективные конвейеры. Линейные участки современных программ редко превышают 10-15 последовательно выполняемых команд. Поэтому конвейер часто перезапускается, что сильно снижает производительность компьютера в целом.

Информация о работе Типы вычислительных систем