Характеристики процессора и внутренней памяти компьютера

Автор работы: Пользователь скрыл имя, 02 Октября 2012 в 22:43, доклад

Краткое описание

Необычайно быстрое развитие вычислительной техники приводит к тому, что одновременно в употреблении находится большое количество компьютеров с достаточно разнообразными характеристиками. Поэтому очень полезно знать, каковы основные характеристики узлов компьютера, на что они влияют и как их подбирать. Здесь будут рассмотрены параметры наиболее важных устройств компьютера, таких как процессор и внутренняя память.

Вложенные файлы: 1 файл

Характеристики процессора и внутренней памяти компьютера.doc

— 56.00 Кб (Скачать файл)

Характеристики  процессора и внутренней памяти компьютера.

Необычайно быстрое  развитие вычислительной техники приводит к тому, что одновременно в употреблении находится большое количество компьютеров  с достаточно разнообразными характеристиками. Поэтому очень полезно знать, каковы основные характеристики узлов компьютера, на что они влияют и как их подбирать. Здесь будут рассмотрены параметры наиболее важных устройств компьютера, таких как процессор и внутренняя память.

Начнем с процессора. Очевидно, что пользователя в первую очередь интересует его производительность, т.е. скорость выполнения предложенной процессору задачи. Традиционно быстродействие процессора измерялось путем определения количества операций в единицу времени, как правило, в секунду. До тех пор, пока машины выполняли только вычисления, такой показатель был достаточно удобен. Однако по мере развития вычислительной техники количество видов обрабатываемой информации возрастало, и обсуждаемый показатель перестал быть универсальным. В самом деле, в простейшем случае даже количество арифметических действий над целыми и над вещественными числами может для одного и того же компьютера отличаться на порядок! Что говорить о скорости обработки графической или видео информации, которые к тому же зависят не только от самого процессора, но и от устройства видеоблоков компьютера... Кроме того, современные процессоры, например, Pentium, имеют очень сложное внутренне устройство и могут выполнять машинные команды параллельно. Иными словами, процессор может одновременно выполнять несколько разных инструкций, а значит, время завершения команды уже зависит не только от нее самой, но и от "соседних" операций! Таким образом, количество выполняемых за секунду операций перестает быть постоянным и выбирать его в качестве характеристики процессора не очень удобно.

Именно поэтому сейчас получила широкое распространение  другая характеристика скорости работы процессора – его тактовая частота. Рассмотрим данную величину подробнее. Любая операция процессора (машинная команда) состоит из отдельных элементарных действий – тактов. Для организации последовательного выполнения требуемых тактов друг за другом, в компьютере имеется специальный генератор импульсов, каждый из которых инициирует очередной такт машинной команды (какой именно, определяется устройством процессора и логикой выполняемой операции). Очевидно, что чем чаще следуют импульсы от генератора, тем быстрее будет выполнена операция, состоящая из фиксированного числа тактов. Из сказанного следует, что тактовая частота определяется количеством импульсов в секунду и измеряется в мегагерцах – т.е. миллионах импульсов за 1 сек. Разумеется, тактовая частота не может быть произвольно высокой, поскольку в какой-то момент процессор может просто "не успеть" выполнить очередной такт до прихода следующего импульса. Однако инженеры делают все возможное для повышения значения этой характеристики процессора, и на данный момент тактовая частота самых современных процессоров уже превышает 1000 МГц, т.е. 1 ГГц (1 гигагерц).

Следует четко представлять, что сравнение тактовых частот позволяет надежно определить, какой из двух процессоров более быстродействующий только в том случае, если оба процессора устроены примерно одинаково. Если же попытаться сравнить процессоры, произведенные разными изготовителями и работающие по разным принципам, можно получить абсолютно неправильные выводы. В самом деле, если в одном из процессоров команда выполняется за 2 такта, а в другом – за 3, то при совершенно одинаковой частоте первый будет работать в полтора раза быстрее! Кроме того, не нужно забывать, что производительность современной компьютерной системы определяется не только быстродействием отдельно взятого процессора, но и скоростями работы остальных узлов компьютера и даже способами организации всей системы в целом: очевидно, что чрезмерно быстрый процессор будет вынужден постоянно простаивать, ожидая, например, медленно работающую память; или другой пример – очень часто простое увеличение объема ОЗУ дает гораздо больший эффект, чем замена процессора на более быстрый.

Косвенно скорость обработки  информации зависит и еще от одного параметра процессора – его разрядности. Под разрядностью обычно понимают число  одновременно обрабатываемых процессором  битов. Формально эта величина есть количество двоичных разрядов в регистрах процессора и для современных моделей она равна 32. Тем не менее, все не так просто. Дело в том, что помимо описанной "внутренней" разрядности процессора существует еще разрядность шины данных, которой он управляет, и разрядность шины адреса. Эти характеристики далеко не всегда совпадают (данные для таблицы взяты из книги М.Гука "Процессоры Intel: от 8086 до Pentium II". – СПб.: Питер, 1997):

Процессор

Разрядность:

Объем памяти

регистров

шины данных

шины адреса

Intel 8086

16

16

20

до 1 Мб

Intel 80286

16

16

24

до 16 Мб

Intel 80386

32

16

24

до 16 Мб

Intel 80486

32

32

32

до 4 Гб

Pentium

32

64

32

до 4 Гб

Pentium II

32

64

36

до 64 Гб


Мы не будем обсуждать  технические причины, по которым  эти три разрядности могут  различаться между собой, ибо причины эти сейчас представляют в основном исторический интерес. Отметим только, что разрядность регистров и разрядность шины данных влияют на длину обрабатываемых данных, а вот разрядность шины адреса R определяет максимальный объем памяти, который способен поддерживать процессор. Эту характеристику часто называют величиной адресного пространства, и она может быть вычислена по простой формуле 2R. Действительно, R двоичных разрядов позволяют получить именно такое количество неповторяющихся чисел, т.е. в данном случае адресов памяти.

Перейдем теперь к  описанию основных характеристик памяти компьютера.

Хотя память компьютера состоит из отдельных битов, непосредственно "общаться" с каждым из них невозможно: биты группируются в более крупные блоки информации и именно они получают адреса, по которым происходит обращение к памяти. По сложившейся исторической традиции минимальная порция информации, которую современный компьютер способен записать в память составляет 8 бит или 1 байт. Отсюда становится очевидным, что общий объем памяти должен измеряться в байтах, или в производных от него единицах. Размер памяти персональных компьютеров стремительно возрастает. Первые модели имели 16-разрядное адресное пространство и, следовательно, объем памяти 216 = 64 Кбайта. Затем, когда памяти под разрабатываемые программные системы перестало хватать, инженеры введением некоторых весьма специфических способов формирования адреса увеличили ее размер на порядок – в MS DOS стандартная память была принята равной 640 Кбайт. Сейчас вы вряд ли сможете приобрести новый компьютер с ОЗУ менее 32-64 Мбайт, т.е. еще на два порядка больше (надеюсь, читатели не забыли, что 1 Мб = 1024 Кбайта).

Еще одной важной характеристикой  памяти является время доступа или  быстродействие памяти. Этот параметр определяется временем выполнения операций записи или считывания данных; он зависит  от принципа действия и технологии изготовления запоминающих элементов.

Оставляя в стороне целый  ряд других технологических характеристик  современных запоминающих устройств, нельзя, тем не менее, пройти мимо статического и динамического устройства микросхем  памяти. Статическая ячейка памяти – это специальная полупроводниковая схема (инженеры называют ее триггер), обладающая двумя устойчивыми состояниями. Одно из них принимается за логический ноль, а другое – за единицу. Состояния эти действительно настолько устойчивы, что при отсутствии внешних воздействий (и, конечно, подключенном напряжения питания!) могут сохраняться сколь угодно долго. Динамические ячейки памяти, напротив, не обладают этим свойством. Такие ячейки фактически представляют собой конденсатор, образованный элементами полупроводниковых микросхем. С некоторым упрощением можно сказать, что логической единице соответствует заряженный конденсатор, а нулю – незаряженный. Существенным свойством динамической ячейки памяти является наличие постепенного самопроизвольного разряда конденсатора через внешние схемы, что ведет к потере информации. Чтобы этого не происходило, конденсаторы динамической памяти необходимо периодически подзаряжать (такой процесс принято называть регенерацией ОЗУ). Оба вида запоминающих микросхем успешно конкурируют между собой, поскольку ни одна из них не является идеальной. С одной стороны, статическая память значительно проще в эксплуатации, т.к. не требует регенерации, и приближается по быстродействию к процессорным микросхемам. С другой стороны, она имеет меньший информационный объем и большую стоимость (в самом деле, изготовление конденсатора значительно проще, чем триггерной схемы и требует на кремниевой пластине гораздо меньше места), сильнее нагревается при работе. На практике в данный момент выбор микросхем для построения ОЗУ всегда решается в пользу динамической памяти. И все же быстродействующая статическая память в современном компьютере тоже обязательно есть: она называется кэш-памятью.

Этот вид памяти заслуживает  отдельного рассмотрения. Он появился относительно недавно, но, начиная с 486 процессора, без кэш-памяти не обходится ни одна модель. Название кэш происходит от английского слова "cache", которое обозначает тайник или замаскированный склад (в частности, этим словом называют провиант, оставленный экспедицией для обратного пути или запас продуктов, например, зерна или меда, который животные создают на зиму). "Секретность" кэш заключается в том, что он невидим для пользователя и данные, хранящиеся там, недоступны для прикладного программного обеспечения. Процессор использует кэш исключительно самостоятельно, помещая туда извлеченные им из ОЗУ данные и команды программы и запоминая при этом в специальном каталоге адреса, откуда информация была извлечена. Если эти данные потребуются повторно, то уже не надо будет терять время на обращение к ОЗУ – их можно получить из кэш-памяти значительно быстрее. Поскольку объем кэш существенно меньше объема оперативной памяти, его контроллер (управляющая схема) тщательно следит за тем, какие данные следует сохранять в кэш, а какие заменять: удаляется та информация, которая используется реже или совсем не используется. Следует заметить, что кэш-память является очень эффективным средством повышения производительности компьютера, в чем легко убедиться на практике, если в вашем компьютере предусмотрена возможность отключения кэш.

В современных компьютерах кэш  обычно строится по двухуровневой схеме. При этом первичный кэш встроен  непосредственно внутрь процессора, а вторичный обычно устанавливается  на системной плате. Как и для  ОЗУ, увеличение объема кэш повышает эффективность работы компьютерной системы.

 

 

 

 

 

Список литературы

Информатика в понятиях и терминах: Кн. для учащихся ст. классов  сред. шк./ Г.А. Бордовский, В.А. Извозчиков, Ю.В. Исаев, В.В. Морозов; Под ред. В.А. Извозчикова. - М.: Просвещение, 1991. - 208 с.

Радченко Н.П., Козлов О.А. Школьная информатика: экзаменационные вопросы  и ответы. - М.: Финансы и статистика, 1998. - 160 с.

Семакин И., Залогова Л., Русаков С., Шестакова Л. Информатика. Учебник  по базовому курсу (7-9 классы). М.: Лаборатория Базовых Знаний, 1998. - 464 с.

Кушниренко А.Г. и др. Основы информатики  и вычислительной техники: Проб. учеб. для сред. учеб. заведений/ А.Г.Кушниренко, Г.В.Лебедев, Р.А.Сворень. - М.: Просвещение, 1990. - 224 с.

Гук М. Аппаратные средства IBM PC. Энциклопедия. СПб.: Издательство "Питер", 2000. - 816 c.


Информация о работе Характеристики процессора и внутренней памяти компьютера