Шины материнской платы, порты персональных компьютеров

Автор работы: Пользователь скрыл имя, 05 Мая 2012 в 03:05, курсовая работа

Краткое описание

Толковый словарь по вычислительным системам определяет понятие интерфейс, как границу раздела двух систем, устройств или программ; элементы соединения и вспомогательные схемы управления, используемые для соединения устройств. Также интерфейсы позволяют подключать к персональным (и не только) компьютерам разнообразные периферийные устройства и их контроллеры. По способу передачи информации интерфейсы подразделяются на параллельные и последовательные. В первом случае все биты передаваемого слова (обычно байта) выставляются и передаются по соответствующим, параллельно идущим проводам одновременно. В ПК (персональном компьютере) традиционно используется параллельный интерфейс Centronics, который осуществляется LPT-портами. В

Содержание

1. Введение………………………………………………………………………….2
2. Шины…………………………………………………………………………...3-6
2.1. Extended ISA……………………………………………………………..…7
2.2. Industry Standard Architecture……………………………………………...8
2.3. Low Pin Count……………………………………………………………….9
2.4. Peripheral Component Interconnect…………………………………….10-11
2.5. PCI Express …………………………………………………………….12-14
2.6. HyperTransport………………………………………………………....15-17
2.7. Serial Peripheral Interface Bus……………………………………………..18
2.8. Advanced Technology Attachment……………………………………19-21
2.9. Serial ATA…………………………………………………………….22-23
2.10. Small Computer System Interface…………………………………….24-26
3. Порты……………………………………………………………………………27
3.1. Параллельный порт…………………………………………………..28-30
3.2. Последовательный порт…………………………………………………31
3.3. USB……………………………………………………………………32-36
3.4. IEEE 1394……………………………………………………………. 37-41
3.5. PS/2……………………………………………………………………….42
4. Заключение …………………………………………………………………..43
5. Список Литературы………………………………………………………….44

Вложенные файлы: 1 файл

курсовая II курс.docx

— 3.61 Мб (Скачать файл)

Идет работа над PCI-Express 3.0. Он будет  обладать пропускной способностью в 8 Гбит/с.

Планы на PCI-Express 3.0: утверждение в 2009 году, а первые продукты на основе нового интерфейса — в 2010 году.

 

 

 

 

 

 

2.6.HyperTransport

Шина HyperTransport , ранее известная как Lightning Data Transport (LDT), — это двунаправленная последовательно/параллельная компьютерная шина, с высокой пропускной способностью и малыми задержками. Для разработки и продвижения данной шины был образован консорциум HyperTransport Technology. Технология используется компаниями AMD и Transmeta в x86-процессорах.

HyperTransport работает на частотах  от 200 МГц до 3,2 ГГц (у шины PCI — 33 и 66 МГц). Кроме того, она использует DDR, что означает, что данные посылаются как по переднему, так и по заднему фронтам сигнала синхронизации, что позволяет осуществлять до 5200 миллионов посылок в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.

HyperTransport поддерживает автоматическое  определение ширины шины, от 2-х  до 32 бит. Полноразмерная, полноскоростная, 32-битная шина в двунаправленном  режиме способна обеспечить пропускную  способность до 41 600 Мбайт/с = 2 (DDR) × 2 × 32/8 (байт) × 2600 (МГц) (максимум в одном направлении — 20 800 Мбайт/с), являясь, таким образом, самой быстрой шиной среди себе подобных. Шина может быть использована как в подсистемах с высокими требованиями к пропускной способности (оперативная память и ЦПУ), так и в подсистемах с низкими требованиями (периферийные устройства). Данная технология также способна обеспечить низкие задержки для других применений в других подсистемах.

Шина HyperTransport основана на передаче пакетов. Каждый пакет состоит из 32-разрядных  слов, вне зависимости от физической ширины шины (количества информационных линий). Первое слово в пакете — всегда управляющее слово. Если пакет содержит адрес, то последние 8 бит управляющего слова сцеплены со следующим 32-битным словом, в результате образуя 40-битный адрес. Шина поддерживает 64-разрядную адресацию — в этом случае пакет начинается со специального 32 разрядного управляющего слова, указывающего на 64 разрядную адресацию, и содержащего разряды адреса с 40 по 63 (разряды адреса нумеруются начиная с 0). Остальные 32-битные слова пакета содержат непосредственно передаваемые данные. Данные всегда передаются 32-битными словами, вне зависимости от их реальной длины (например, в ответ на запрос на чтение одного байта по шине будет передан пакет, содержащий 32 бита данных и флагом-признаком того, что значимыми из этих 32 бит являются только 8).

Пакеты HyperTransport передаются по шине последовательно. Увеличение пропускной способности  влечёт за собой увеличение ширины шины. HyperTransport может использоваться для передачи служебных сообщений  системы, для передачи прерываний, для  конфигурирования устройств, подключённых к шине и для передачи данных.

Операция записи на шине бывает двух видов — posted и non-posted. Posted-операция записи заключается в передаче единственного пакета, содержащего адрес, по которому необходимо произвести запись, и данные. Эта операция обычно используется для обмена данными с высокоскоростными устройствами, например, для DMA-передачи. Non-posted операция записи состоит из посылки двух пакетов: устройство, инициирующее операцию записи посылает устройству-адресату пакет, содержащий адрес и данные. Устройство-адресат, получив такой пакет, проводит операцию записи и отсылает устройству-инициатору пакет, содержащий информацию о том, успешно ли произведена запись. Таким образом, posted-запись позволяет получить максимальную скорость передачи данных (нет затрат на пересылку пакета-подтверждения), а non-posted-запись позволяет обеспечить надёжную передачу данных (приход пакета-подтверждения гарантирует, что данные дошли до адресата).

Шина HyperTransport поддерживает технологии энергосбережения, а именно ACPI. Это значит, что при изменении состояния процессора на энергосберегающее, изменяется также и состояние устройств. Например, при отключении процессора жёсткие диски также отключаются.

Версия

Год

максимальная  частота

максимальная  ширина

пиковая пропускная способность 
(в оба направления)

1.0

2001

800 МГц

32 бит

12,8 Гбайт/c

1.1

2002

800 МГц

32 бит

12,8 Гбайт/c

2.0

2004

1,4 ГГц

32 бит

22,4 Гбайт/c

3.0

2006

2,6 ГГц

32 бит

41,6 Гбайт/c

3.1

2008

3,2 ГГц

32 бит

51,6 Гбайт/c


Шина HyperTransport нашла широкое применение, в основном, в качестве замены шины процессора. Для примера, к процессору Pentium нельзя напрямую подключать устройства с шиной PCI, так как этот процессор использует свою специализированную шину (которая может быть различной у разных поколений процессоров). Для подключения дополнительных устройств (например с шиной PCI) в таких системах необходимы дополнительные устройства для сопряжения шины процессора с шиной периферийных устройств (мосты). Данные адаптеры обычно включают в специализированные наборы системной логики, называемые северный мост и южный мост.

Процессоры разных производителей могут использовать разные шины, а  значит для них нужны разные мосты  для соединения шины процессора с  периферийными шинами. Компьютеры, использующие шину HyperTransport более универсальны и просты, а также более производительны. Однажды разработанный мост PCI-HyperTransport позволяет взаимодействовать любому процессору, поддерживающему шину HyperTransport и любому устройству шины PCI. Для  примера, NVIDIA nForce чипсет использует шину HyperTransport для соединения между северным и южным мостами.

Другое применение HyperTransport — шина NUMA многопроцессорных компьютеров. AMD использует HyperTransport как часть проприетарной архитектуры Direct Connect Architecture в своей линейке процессоров Opteron и Athlon 64.

HyperTransport так же может быть  использована в маршрутизаторах и коммутаторах. Коммутаторы и маршрутизаторы могут иметь множество портов, данные между которыми должны передаваться как можно быстрее. Например, 4-портовый 100-Мбит/с Ethernet-коммутатор нуждается во внутренней шине с пропускной способностью не менее 800 Мбит/с (100 Мбит/с × 4 порта × 2 направления). Пропускная способность шины HyperTransport значительно превосходит 800 Мбит/с, что позволяет применить её для построения такого коммутатора.

Недостаточная пропускная способность  шины, соединяющей ЦПУ и сопроцессор часто является причиной головной боли у разработчиков компьютерных систем. Характеристики HyperTransport позволяют использовать её для данного применения, был разработан разъём для подключения сопроцессоров по шине HyperTransport, получивший название HTX (англ. HyperTransport eXpansion), и использующий разъём, механически совместимый с тем, который используется для подключения устройств 16x PCI Express. Использование разъёма HTX позволяет установленной в него карте расширения напрямую обмениваться данными с ЦПУ, а также осуществлять сеансы доступа к системной ОЗУ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7. Serial Peripheral Interface Bus

SPI (англ. Serial Peripheral Interface, шина SPI) — последовательный синхронный стандарт передачи данных в режиме полного дуплекса, разработанный компанией Motorola для обеспечения простого и недорогого сопряжения микроконтроллеров и периферии. SPI также иногда называют четырёхпроводным интерфейсом .

В отличие от стандартного последовательного  порта, SPI является синхронным протоколом, в котором любая передача синхронизирована с общим тактовым сигналом, генерируемым ведущим устройством (процессором). Принимающая периферия (ведомая) синхронизирует получение битовой последовательности с тактовым сигналом. К одному последовательному  периферийному интерфейсу ведущего устройства-микросхемы может присоединяться несколько микросхем. Ведущее устройство выбирает ведомое для передачи, активируя  сигнал «выбор кристалла» (chip select) на ведомой  микросхеме. Периферия, не выбранная  процессором, не принимает участие  в передаче по SPI.

В SPI используются четыре цифровых сигнала:

  • MOSI или SI — выход ведущего, вход ведомого (англ. Master Out Slave In). Служит для передачи данных от ведущего устройства ведомому.
  • MISO или SO — вход ведущего, выход ведомого (англ. Master In Slave Out). Служит для передачи данных от ведомого устройства ведущему.
  • SCLK или SCK — последовательный тактовый сигнал (англ. Serial CLocK). Служит для передачи тактового сигнала для ведомых устройств.
  • CS или SS — выбор микросхемы, выбор ведомого (англ. Chip Select, Slave Select).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8. Advanced Technology Attachment

ATA (англ. Advanced Technology Attachment,) — параллельный интерфейс подключения накопителей (жёстких дисков и оптических приводов) к компьютеру. В 90-е годы XX века был стандартом на платформе IBM PC; в настоящее время вытесняется своим последователем — SATA. Разные версии ATA известны под синонимами IDE, EIDE, UDMA, ATAPI; с поя влением SATA также получил название PATA (Parallel ATA).

Для подключения жёстких  дисков с интерфейсом PATA обычно используется 40-проводный кабель (именуемый также  шлейфом). Каждый шлейф обычно имеет  два или три разъёма, один из которых  подключается к разъёму контроллера  на материнской плате (в более  старых компьютерах этот контроллер размещался на отдельной плате расширения), а один или два других подключаются к дискам. В один момент времени  шлейф P-ATA передаёт 16 бит данных. Иногда встречаются шлейфы IDE, позволяющие подключение трёх дисков к одному IDE каналу, но в этом случае один из дисков работает в режиме read-only.

Долгое время шлейф ATA содержал 40 проводников, но с введением режима Ultra DMA/66 (UDMA4) появилась его 80-проводная версия. Все дополнительные проводники — это проводники заземления, чередующиеся с информационными проводниками. Такое чередование проводников уменьшает ёмкостную связь между ними, тем самым сокращая взаимные наводки. Ёмкостная связь является проблемой при высоких скоростях передачи, поэтому данное нововведение было необходимо для обеспечения нормальной работы установленной спецификацией UDMA4 скорости передачи 66 МБ/с (мегабайт в секунду). Более быстрые режимы UDMA5 и UDMA6 также требуют 80-проводного кабеля.

Хотя число проводников удвоилось, число контактов осталось прежним, как и внешний вид разъёмов. Внутренняя же разводка, конечно, другая. Разъёмы для 80-проводного кабеля должны присоединять большое число проводников  заземления к небольшому числу контактов  заземления, в то время, как в 40-проводном  кабеле проводники присоединяются каждый к своему контакту. У 80-проводных  кабелей разъёмы обычно имеют  различную расцветку (синий, серый  и чёрный), в отличие от 40-проводных, где обычно все разъёмы одного цвета (чаще чёрные).

Стандарт ATA всегда устанавливал максимальную длину кабеля равной 46 см. Это ограничение затрудняет присоединение устройств в больших корпусах, или подключение нескольких приводов к одному компьютеру, и почти полностью уничтожает возможность использования дисков PATA в качестве внешних дисков. Хотя в продаже широко распространены кабели большей длины, следует иметь в виду, что они не соответствуют стандарту. То же самое можно сказать и по поводу «круглых» кабелей, которые также широко распространены. Стандарт ATA описывает только плоские кабели с конкретными характеристиками полного и ёмкостного сопротивлений. Это, конечно, не означает, что другие кабели не будут работать, но, в любом случае, к использованию нестандартных кабелей следует относиться с осторожностью.

Если к одному шлейфу подключены два устройства, одно из них обычно называется ведущим (англ. master), а другое ведомым (англ. slave). Обычно ведущее устройство идёт перед ведомым в списке дисков, перечисляемых BIOS’ом компьютера или операционной системы. В старых BIOS’ах (486 и раньше) диски часто неверно обозначались буквами: «C» для ведущего диска и «D» для ведомого.

Если на шлейфе только один привод, он в большинстве случаев должен быть сконфигурирован как ведущий. Некоторые диски (в частности, производства Western Digital) имеют специальную настройку, именуемую single (т. е. «один диск на кабеле»). Впрочем, в большинстве случаев единственный привод на кабеле может работать и как ведомый (такое часто встречается при подключении CD-ROM’а на отдельный канал).

Настройка, именуемая cable select (т. е., «выбор, определяемый кабелем», кабельная выборка), была описана как опциональная в спецификации ATA-1 и стала широко распространена начиная с ATA-5, поскольку исключает необходимость переставлять перемычки на дисках при любых переподключениях. Если привод установлен в режим cable select, он автоматически устанавливается как ведущий или ведомый в зависимости от своего местоположения на шлейфе. Для обеспечения возможности определения этого местоположения шлейф должен быть с кабельной выборкой. У такого шлейфа контакт 28 (CSEL) не подключен к одному из разъёмов (серого цвета, обычно средний). Контроллер заземляет этот контакт. Если привод видит, что контакт заземлён (то есть на нём логический 0), он устанавливается как ведущий, в противном случае (высокоимпедансное состояние) — как ведомый.

Во времена использования 40-проводных  кабелей, широко распространилась практика осуществлять установку cable select путём  простого перерезания проводника 28 между двумя разъёмами, подключаемыми  к диску. При этом ведомый привод оказывался на конце кабеля, а ведущий  в середине. Такое размещение в  поздних версиях спецификации было даже стандартизировано. К сожалению, когда на кабеле размещается только одно устройство, такое размещение приводит к появлению ненужного  куска кабеля на конце, что нежелательно — как из соображений удобства, так и по физическим параметрам: этот кусок приводит к отражению сигнала, особенно на высоких частотах.

Информация о работе Шины материнской платы, порты персональных компьютеров