Элементы теории графов

Автор работы: Пользователь скрыл имя, 21 Апреля 2015 в 01:05, курсовая работа

Краткое описание

Граф - совокупность точек и линий, в которой каждая линия соединяет две точки. Точки называются вершинами, или узлами, графа, линии - ребрами графа. Если ребро соединят две вершины, то говорят, что оно им инцидентно; вершины, соединенные ребром называются смежными. Две вершины, соединенные ребром, могут совпадать; такое ребро называется петлей. Число ребер, инцидентных вершине, называется степенью вершины. Если два ребра инцидентны одной и той же паре вершин, они называются кратными; граф, содержащий кратные ребра, называется мультиграфом.
Ребро, соединяющее две вершины, может иметь направление от одной вершины к другой; в этом случае оно называется направленным, или ориентированным, и изображается стрелкой. Граф, в котором все ребра ориентированные, называется ориентированным графом (орграфом); ребра орграфа часто называют дугами. Дуги именуются кратными, если они не только имеют общие вершины, но и совпадают по направлению. Иногда нужно рассматривать не весь граф, а его часть (часть вершин и часть ребер). Часть вершин и все инцидентные им ребра называются подграфом; все вершины и часть инцидентных им ребер называются суграфом. Циклом называется замкнутая цепь вершин.

Вложенные файлы: 1 файл

Элементы теории графов.doc

— 90.50 Кб (Скачать файл)

Элементы теории графов.

Граф - совокупность точек и линий, в которой каждая линия соединяет две точки. Точки называются вершинами, или узлами, графа, линии - ребрами графа. Если ребро соединят две вершины, то говорят, что оно им инцидентно; вершины, соединенные ребром называются смежными. Две вершины, соединенные ребром, могут совпадать; такое ребро называется петлей. Число ребер, инцидентных вершине, называется степенью вершины. Если два ребра инцидентны одной и той же паре вершин, они называются кратными; граф, содержащий кратные ребра, называется мультиграфом.

Ребро, соединяющее две вершины, может иметь направление от одной вершины к другой; в этом случае оно называется направленным, или ориентированным, и изображается стрелкой. Граф, в котором все ребра ориентированные, называется ориентированным графом (орграфом); ребра орграфа часто называют дугами. Дуги именуются кратными, если они не только имеют общие вершины, но и совпадают по направлению. Иногда нужно рассматривать не весь граф, а его часть (часть вершин и часть ребер). Часть вершин и все инцидентные им ребра называются подграфом; все вершины и часть инцидентных им ребер называются суграфом. Циклом называется замкнутая цепь вершин. Деревом называется граф без циклов. Остовным деревом называется связанный суграф графа, не имеющий циклов.

Граф однозначно задан, если заданы множество его вершин, множество ребер и указаны все инцидентности (т.е. указано, какие вершины какими ребрами соединены). Наиболее наглядно граф задается рисунком; однако не все детали рисунка одинаково важны; в частности, несущественны геометрические свойства ребер (длинна, кривизна и т.д.) и взаимное расположение вершин на плоскости.

Для неориентированного ребра порядок, в котором указанны соединяемые им вершины, не важен. Для ориентированного ребра важно: первой указывается вершина, из которой выходит ребро.

Маршрут, или путь - это последовательность ребер в неориентированном графе, в котором конец каждого ребра совпадает с началом следующего ребра. Число ребер маршрута называется его длинной.

Графы широко используются как в самой математике, так и в ее приложениях. Они применяются при построении различных математических моделей: линий электропередачи, сетей автодорог, линий воздушных сообщений и пр.

Задача состоит в том, найти путь из вершины A в вершину B. Будем задавать граф матрицей смежности, т.е. квадратной таблицей NxN, в которой на пересечении i-й строки и j-го столбца значение TRUE, если i и j соединены ребром, и FALSE в противном случае.

Поиск в ширину.

Подобно тому как, согласно принципу Гюйгенса, каждая точка волнового фронта является источником вторичной волны, мы, отправляясь из заданной вершины A, посещаем все смежные с ней вершины (т.е. вершины, в которые ведут стрелки из A). Каждая посещенная вершина становится источником новой волны и т.д. При этом необходимо позаботиться о том, чтобы не вернутся в ту вершину, в которой уже были.

Для реализации алгоритма понадобятся:

матрица m[1..n, 1..n] - матрица смежности графа;

вспомогательный массив queue[1..n], в котором будет формироваться очередь, т.е. тип данных первый вошел – первый вышел (FIFO). Размер его достаточен, так как мы не посещаем вершины дважды. С массивом queue связаны две переменные - head и tail. В переменной head будет находиться номер текущей вершины, из которой идет волна, а при помощи переменной tail новые вершины помещаются в "хвост" очереди queue;

вспомогательный массив visited[1..n], который нужен для того, чтобы отмечать уже пройденные вершины (visited[i]=TRUE <=> вершина i пройдена);

вспомогательный массив prev[1..n] для хранения пройденных вершин. В этом массиве и будет сформирован искомый путь;

переменная f, которая примет значение TRUE, когда путь будет найден.

Кроме того, мы введем несколько вспомогательных переменных, которые понадобятся при организации циклов.

Program breadth_first_search;

Const n=9;

m:array[1..n, 1..n] of boolean =

(

(False, True, True, False, False, False, False, False, False),

(True, False, True, False, False, False, True, True, False),

(True, True, False, True, True, False, False, False, False),

(False, False, True, False, True, False, False, False, False),

(False, False, True, True, False, True, False, True, False),

(False, False, False, False, True, False, True, True, True ),

(False, True, False, False, False, True, False, True, True ),

(False, True, False, False, True, True, True, False, False),

(False, False, False, False, False, True, True, False, False)

);

Var A, B: integer;

Procedure A_to_B(A, B: integer);

Var

Visited: array[1..n] of boolean;

Prev: array[1..n] of integer;

c: array[1..n] of integer;

head, tail: integer;

f: boolean;

i, v, k: integer;

Begin

head:=1;

tail:=1;

f:=False;

For i:=1 to n do

Begin

Visited[i]:=False;

Prev[i]:=0

End;

C[tail]:=A;

Visited[A]:=True;

While (head<=tail) and not f do

Begin

v:=C[head];

head:=head+1;

For k:=1 to n do

if m[v, k] and not Visited[k] then

Begin

tail:=tail+1;

C[tail]:=k;

Visited[k]:=True;

Prev[k]:=v;

if k=B then

Begin

f:=true;

break

End

End

End;

if f then

Begin

k:=B;

Write(B);

While Prev[k]<>0 do

Begin

Write('<-', Prev[k]);

k:=Prev[k]

end

End

else

Write('Пути из ', A, ' в ', B, ' нет')

end;

Begin

Write('A= '); readln(A);

Write('B= '); readln(B);

A_to_B(A, B)

End.

Поиск в глубину .

Идея поиска в глубину проста: отправляясь от текущей вершины, мы находим новую (еще не пройденную) смежную с ней вершину, которую помечаем как пройденную и объявляем текущей. После этого процесс возобновляется. Если новой смежной вершины нет (тупик), возвращаемся к той вершине, из которой попали в текущую, и делаем следующую попытку. Если попадем в вершину B, печатаем путь. Если все вершины исчерпаны - такого пути нет.

Заметим, что построенный таким образом алгоритм способен находить все пути из A в B, но первый найденный необязательно должен быть кратчайшим.

Как обычно, алгоритм с возвратами легче всего оформить с помощью рекурсивной процедуры. Для ее реализации нам понадобятся:

матрица m[1..n, 1..n] - матрица смежности графа;

вспомогательный массив visited[1..n], который мы будем для того, чтобы отмечать уже пройденные вершины (visited[i]=TRUE <=> вершина i пройдена);

переменная f, которая примет значение TRUE, когда путь будет найден.

Program depth_first_search;

Const n=9;

m:array[1..n, 1..n] of boolean =

(

(False, True, True, False, False, False, False, False, False),

(True, False, True, False, False, False, True, True, False),

(True, True, False, True, True, False, False, False, False),

(False, False, True, False, True, False, False, False, False),

(False, False, True, True, False, True, False, True, False),

(False, False, False, False, True, False, True, True, True ),

(False, True, False, False, False, True, False, True, True ),

(False, True, False, False, True, True, True, False, False),

(False, False, False, False, False, True, True, False, False)

);

Var A, B: integer;

Procedure A_to_b(A, B: integer);

Var

Visited: array[1..n] of boolean;

f: boolean;

i: integer;

Procedure Depth(p: integer);

var k: integer;

Begin

Visited[p]:=True;

For k:=1 to n do

If not f then

If m[p, k] and not Visited[k] then

If k=B then

Begin

f:=True;

Write(B);

Break

End

else Depth(k);

If f then write('<=', p);

End;

Begin

For i:=1 to n do Visited[i]:=False;

f:=false;

Depth(A);

If not f then write('Пути из ', A, ' в ', B, ' нет')

End;

Begin

write('A= '); readln(A);

write('B= '); readln(B);

A_to_B(A, B)

End.

Эйлеровы циклы .

Требуется найти цикл, проходящий по каждой дуге ровно один раз. Эту задачу впервые поставил и решил Леонард Эйлер, чем и заложил основы теории графов, а соответствующие циклы теперь называются эйлеровыми.

Задача возникла из предложенной Эйлеру головоломки, получившей название "проблема кенигсбергских мостов". Река Прегель, протека ющая через Калининград (прежде город назывался Кенигсбергом), омывает два острова. Берега реки связаны с островами так, как это показано на рисунке. В головоломке требовалось найти маршрут, проходящий по всем участкам суши таким образом, чтобы каждый из мостов был пройден ровно один раз, а начальный и конечный пункты маршрута совпадали.

Выберем в качестве вершин графа берега реки, а в качестве ребер - мосты, их соединяющие. После этого задача становится очевидной: требование неосуществимо - чтобы его выполнить, число дуг, приходящих к каждой вершине, должно быть четным. В самом деле, поскольку по одному мосту нельзя проходить дважды, каждому входу на берег должен соответствовать выход.

Что необходимо, чтобы в графе существовал эйлеров цикл? Во-первых, граф должен быть связанным: для любых двух вершин должен существовать путь, их соединяющий. Во-вторых, для неориентированных графов число ребер в каждой вершине должно быть четным. На самом деле этого оказывается достаточно.

Теорема. Чтобы в связанном графе существовал эйлеров цикл, необходимо и достаточно, чтобы число ребер в каждой вершине было четным.

Доказательство. Необходимость доказана выше. Доказательство достаточности конструктивно - в результате будет получен требуемый алгоритм.

Доказательство ведется индукцией по числу ребер графа. Пусть утверждение доказано для всех m<n. Рассмотрим граф с n ребрами. Выберем произвольную вершину A и начнем строить требуемый путь, вычерчивая (стирая) каждое ребро, по которому проходим, чтобы не пройти его дважды.

Заметим, что, пока мы не вернулись в А, мы всегда можем продолжить путь из текущего узла X по крайней мере на одно ребро. В самом деле, каждый проход через X оставляет четным число ребер в этой вершине. Поэтому, если мы входим в X, остается нечетное число невычеркнутых ребер, из нее выходящих (по крайней мере одно ребро). Пусть мы вернулись в A. Тогда, если все ребра вычеркнуты, теорема доказана. В противном случае оставшиеся ребра распадаются на связанные подграфы, каждый из которых содержит хотя бы одну вершину из уже построенного цикла (поскольку первоначальный граф связанный) и содержит менее n ребер. Пусть, …,– вершины указанных подграфов, через которые проходит построенный путь.

По предположению индукции в каждом из них существует эйлеров цикл. Строим теперь новый путь из A следующим образом:

– идем по старому пути до;

– включаем в него новый путь;

– идем по старому пути от до;

– повторяем процесс для вершины и т.д.

Для окончания доказательства (и построения алгоритма) заметим, что база индукции очевидна: если ребро одно, то оно – петля.

Хотя доказательство проведено для неориентированных графов, оно сразу переносится на ориентированные, только требование четности заменяется теперь на такое: число входящих в каждую вершину ребер должно быть равно числу выходящих.

Осталось заметить, что предложенный в доказательстве алгоритм линеен, т.е. число действий прямо пропорционально числу ребер.

Program Euler;

const n=9;

m: array[1..n, 1..n] of boolean=

(

(False, True, True, False, False, False, False, False, False),

(True, False, True, False, False, False, True, True, False),

(True, True, False, True, True, False, False, False, False),

(False, False, True, False, True, False, False, False, False),

(False, False, True, True, False, True, False, True, False),

(False, False, False, False, True, False, True, True, True ),

(False, True, False, False, False, True, False, True, True ),

(False, True, False, False, True, True, True, False, False),

(False, False, False, False, False, True, True, False, False)

);

Type

list=^node;

node=record

i: integer;

next: list

end;

Var stack1, stack2: list;

v, u, x, i: integer;

Procedure Push(x: integer; var stack: list);

Var temp: list;

Begin

New(temp);

temp^.i:=x;

temp^.next:=stack;

stack:=temp

End;

Procedure Pop(var x: integer; var stack: list);

Begin

x:=stack^.i;

stack:=stack^.next

End;

Function Peek(stack: list): integer;

Begin

Peek:=stack^.i

End;

Procedure PrintList(l: list);

Begin

Writeln;

If l=nil then writeln('NIL');

While l<>nil do

Begin

Write(l^.i:3);

l:=l^.next

End

End;

Begin

stack1:=nil;

stack2:=nil;

Write('Начальная вершина: ');readln(v);

Push(v, stack1);

While stack1<>NIL do

Begin

v:=peek(stack1);

i:=1;

While (i<=n) and not m[v, i] do inc(i);

If i<=n then

Информация о работе Элементы теории графов