Автор работы: Пользователь скрыл имя, 22 Сентября 2013 в 22:05, реферат
Основные из этих требований можно сформулировать следующим образом:
получатель сообщения должен быть уверен в истинности отправителя, то есть в том, что отправитель – это то лицо, за которое он себя выдает;
отправитель сообщения должен быть уверен в истинности получателя;
получатель должен быть уверен в истинность полученного сообщения, то есть в том, что принятые данные идентичны отправленным;
отправитель должен быть уверен в истинности доставленного сообщения;
отправитель должен быть уверен в своевременности доставки сообщения;
и отправитель, и получатель должны быть уверены в том, что никто кроме них двоих (и, возможно, специального посредника) не знает о факте передачи сообщения;
и отправитель, и получатель должны быть уверены в том, что никто кроме них двоих (и, возможно, специального посредника) не ознакомился с содержимым сообщения.
Введение. 4
1. Понятие защищенной телекоммуникационной системы. 5
1.1. Обобщенная структурно-функциональная схема ТКС. 5
1.2. Понятие информации. 6
1.3. Понятие информационной безопасности. 7
1.4. Обзор рекомендаций ISO 7498-2. 8
1.5. Обзор требований Руководящих документов ГТК РФ 19
1.6. Обзор стандарта ИSO/IEC 15408-1-99. 22
2. Основы криптографической защиты телекоммуникаций. 30
2.1. Основы теории информации. 30
2.2. Модель криптозащищенной ТКС. 38
2.3. Теоретическая оценка криптозащищенности ТКС. 46
2.4. Практическая оценка криптозащищенности ТКС. 53
3. Основы теории надежности. 55
3.1. Основные понятия теории надежности. 55
3.2. Важнейшие распределения наработки. 59
3.3. Методы статистического оценивания наработки по результатам испытаний. 63
3.4. Задачи по теории надежности. 64
Литература. 67
Как указывалось выше, отличительной особенностью защищенной ТКС является регламентированный доступ к собственному информационному пространству. Ограничение такого доступа может осуществляться различными способами. Например, можно использовать проводные линии связи в сочетании с физической охраной протянутого кабеля (в этом отношении перспективны волоконно-оптические линии связи, позволяющие в ряде случаев исключить физическую охрану, сохраняя конфиденциальность телекоммуникаций); возможны и другие способы. Однако наиболее эффективным в плане надежности, удобства реализации, а также (в ряде случаев) стоимости является применение в ТКС криптографической защиты.
Реализация криптозащиты в ТКС на стадии проектирования, создания системы, а также ее эксплуатации всегда должна основываться на обоснованных критериях защищенности (криптостойкости). Существуют различные подходы к формированию подобного рода критериев, при этом в настоящем пособии рассматривается шенноновский подход, существенно связанный с теории информации, энтропией, позволяющий ввести и обосновать численные характеристики криптозащищенности ТКС.
Пусть имеет место некоторое случайное событие. То, что событие случайно, означает отсутствие полной уверенности в его наступлении, что, в свою очередь, создает неопределенность в исходах опытов, связанных с данным событием. Безусловно, степень неопределенности различна для разных ситуаций. Например, если опыт состоит в определении возраста случайно выбранного студента 1-го курса дневного отделения вуза, то с большой долей уверенности можно утверждать, что он окажется менее 30 лет; хотя по положению на дневном отделении могут обучаться лица в возрасте до 35 лет, чаще всего очно учатся выпускники школ ближайших нескольких выпусков. Гораздо меньшую определенность имеет аналогичный опыт, если проверяется, будет ли возраст произвольно выбранного студента меньше 20 лет. Для практики важно иметь возможность произвести численную оценку неопределенности разных опытов.
Введение количественной меры неопределенности целесообразно начать с простой ситуации, когда опыт имеет n равновероятных исходов. Очевидно, что неопределенность каждого из них зависит от n, то есть (символически) неопределенность = f(n). Можно указать некоторые свойства функции f:
Для определения явного вида функции f(n) рассмотрим два независимых опыта A и B, с количествами равновероятных исходов, соответственно nA и nB. Рассмотрим также сложный опыт C, который состоит в одновременном выполнении опытов A и B. Число возможных исходов опыта С равно nA×nB, причем, все они равновероятны. Очевидно, неопределенность исхода такого опыта будет больше неопределенности опыта A, поскольку к ней добавляется неопределенность B. Естественно допустить, что мера неопределенности C равна сумме неопределенностей опытов A и B, то есть неопределенность аддитивна:
(1)
Теперь можно задуматься о том, каким может быть явный вид функции f(n), чтобы он удовлетворял приведенным выше свойствам и соотношению (1)? Легко увидеть, что такому набору свойств удовлетворяет функция log(n), причем можно показать, что она единственная из всех возможных классов функций. Таким образом, за меру неопределенности опыта с n равновероятными исходами можно принять число log(n).
Следует заметить, что выбор основания логарифма в данном случае значения не имеет, поскольку в силу известной формулы перехода от одного основания логарифма к другому logbn = logba×logan, переход к другому основанию состоит во введении одинакового для обеих частей выражения (1) постоянного множителя logba, что равносильно изменению масштаба (то есть размера единицы) измерения неопределенности. Поскольку это так, мы имеет возможность выбрать удобное для нас (из каких-то дополнительных соображений) основание логарифма. Таким удобным основанием оказывается 2, поскольку в этом случае за единицу измерения принимается неопределенность, содержащаяся в опыте, имеющем лишь два равновероятных исхода, которые можно обозначить, например, ИСТИНА (True) и ЛОЖЬ (False) и использовать для анализа таких событий аппарат математической логики.
Единица измерения неопределенности при двух возможных исходах опыта называется бит. Название бит происходит от английского binary digit, что в дословном переводе означает «двоичный разряд» или «двоичная единица».
Таким образом, установлен явный вид функции, описывающей неопределенность опыта, имеющего n равновероятных исхода:
(2)
На основании формулы для равновероятных исходов и (2) несложно найти неопределенность, вносимую каждым отдельным исходом в общую. Поскольку исходов n и все они равновероятны (и, следовательно, равнозначны), а общая неопределенность равна log2n, из свойства аддитивности неопределенности следует, что неопределенность, вносимая одним исходом, составляет
. (3)
Таким образом, неопределенность E, вносимая каждым из равновероятных исходов, равна:
. (4)
Обобщая формулу (4) на ситуацию, когда исходы опытов не равновероятны, например, p(A1) и p(A2), имеем:
, (5)
, (6)
. (7)
Обобщая это выражение на n неравновероятных исходов, получаем:
. (8)
Введенная таким образом величина называется энтропией опыта A. С учетом формулы для среднего значения дискретных случайных величин , можно записать (8) в виде
. (9)
Это означает, что энтропия является мерой неопределенности опыта, в котором проявляются случайные события, и равна средней неопределенности всех возможных его исходов.
Из такого определения вытекают следующие свойства энтропии.
1. Как следует из (8), E=0 тогда и только тогда, когда какая-либо из вероятностей p(Aj)=1. Однако при этом из условия нормировки следует, что все остальные p(Ai)=0 (i¹j), то есть реализуется ситуация, когда один из исходов является достоверным (а событие перестает быть случайным). Во всех остальных случаях, очевидно, E > 0.
2. Из аддитивности
E(AÙB)=E(A)+E(B), (10),
то есть энтропия сложного опыта, состоящего из нескольких независимых, равна сумме энтропий отдельных опытов.
3. Пусть имеется два опыта с одинаковым числом исходов n, но в одном случае они равновероятны, а в другом – нет. Каково соотношение энтропий опытов? Можно доказать, что
, (11)
то есть при прочих равных условиях наибольшую энтропию имеет опыт с равновероятными исходами. Другими словами, энтропия максимальна в опытах, где все исходы равновероятны.
При этом имеет место аналогия с понятием энтропии, используемой в физике, когда энтропия выступает как мера беспорядка в системе, при этом вероятность состояния системы максимальна у полностью разупорядоченной (равновесной) системы, причем энтропия и термодинамическая вероятность связаны логарифмической зависимостью.
Рассмотрим пример. Пусть имеются два ящика, в каждом из которых по 12 шаров. В первом – 3 белых, 3 черных и 6 красных; во втором – каждого цвета по 4. Опыты состоят в вытаскивании по одному шару из каждого ящика. Что можно сказать относительно неопределенностей этих опытов? Согласно (10) находим энтропии обоих опытов:
, (12)
. (13)
Отсюда видно, что E2>E1, т.е. во втором опыте неопределенность исхода выше, что, кстати, иллюстрирует справедливость формулы (11).
Энтропия E(A) в соответствии с приведенным выше определением показывает неопределенность исхода опыта A. Возможна ситуация, когда в результате некоторого опыта B, который независим от A и предшествует ему, неопределенность A уменьшится.
Например, имеется три груза разной массы, и опыт состоит в определении наиболее тяжелого. Очевидно, неопределенность опыта уменьшится, если предварительно провести вспомогательный опыт – сравнить массы двух грузов и найти более тяжелый из них. Пусть EB(A) – энтропия нового опыта, который нужно будет произвести после опыта B. Очевидно, E(A) ³ EB(A), причем равенство реализуется в том случае, если знание исхода опыта B никак не сказывается на неопределенности опыта A. В остальных случаях знание исхода опыта B понижает неопределенность опыта A. Разность E(A) и EB(A), очевидно, показывает, какие новые данные относительно A мы получаем, произведя опыт B. Эта разность называется информацией относительно опыта A, содержащейся в опыте B.
(14)
Это выражение открывает
Последнее утверждение позволяет записать:
. (15)
На основании (15) можно определить среднее количество информации, содержащейся в каком-либо исходе опыта A. Рассмотрим ряд примеров применения этой формулы.
Пример 1. Какое количество информации требуется, чтобы узнать исход броска монеты?
Решение. В данном случае n=2 и события равновероятны, т.е. p1=p2=0,5. Согласно (15),
H= –0,5×log20,5 – 0,5×log20,5 = 1 бит.
Пример 2. Некто задумал целое число в интервале от 0 до 3. Наш опыт состоит в угадывании этого числа. На наши вопросы Некто может отвечать лишь «Да» или «Нет». Какое количество информации мы должны получить (сколько задать вопросов), чтобы узнать задуманное число (полностью снять начальную неопределенность).
Решение. Исходами в данном случае являются:
A1 = «задуман 0», A2 = «задумано 1», A3 = «задумано 2», A4 = «задумано 3».
Предполагая, что вероятности «быть задуманными» у всех чисел одинаковы, для n=4 имеем p(Ai)=1/4, log2 p(Ai)= –2 и H = 2 бит. Таким образом, для полного снятия неопределенности опыта (угадывания задуманного числа) нам необходимо 2 бит информации, то есть ответы на 2 вопроса с двумя возможными вариантами ответов (да – нет).
Количество информации равно числу вопросов с бинарными вариантами ответов, которые необходимо задать, чтобы полностью снять неопределенность задачи.
Какие вопросы необходимо задать, чтобы процесс угадывания был оптимальным, т.е. содержал минимальное их число? Здесь удобно воспользоваться так называемым выборочным каскадом (рис. 2):
Вопрос 1
Ответ 1
Вопрос 2
Ответ 2
Рис. 2. Выборочный каскад
Таким образом, два полученных ответа
полностью снимают
На основе (15) нетрудно получить частное следствие для ситуации, когда все n исходов равновероятны. В этом случае
, (16)
, (17)
. (18)
Формула (18) была выведена еще в 1928 г. американским инженером Р.Хартли. Она связывает количество равновероятных событий n и количество информации в сообщении, что любое из этих событий произошло. Частным случаем применения формулы (18) при n=2k является
. (19)
Пример: Случайным образом вынимается карта из колоды в 32 карты. Какое количество информации требуется, чтобы угадать, что это за карта?
Решение: Для данной ситуации n=25, следовательно, k=5 и H=5 бит. Последовательность бинарных вопросов придумайте самостоятельно.
Попытаемся понять смысл полученных результатов. Необходимо выделить ряд моментов.
1. Формула (15) является статистическим
определением понятия информаци
Информация о работе Основы построения и эксплуатации защищенных телекоммуникационных систем