Автор работы: Пользователь скрыл имя, 09 Сентября 2013 в 09:59, реферат
В момент коммутации эта э.д.с. равна напряжению на сопротивлении R, а в дальнейшем уменьшается по экспоненциальному закону. На основании изложенного можно сделать следующие выводы.
При коротком замыкании в рассматриваемой цепи ток в ней изменяется по экспоненциальному закону, уменьшаясь от начального значения до нуля.
Скорость изменения тока определяется постоянной времени цепи, которая равна индуктивности катушки, деленной на активное сопротивление цепи.
Практически можно считать, что переходный процесс заканчивается при t ≈ (3…5)τ , когда первоначальное значение тока уменьшается по модулю на порядок.
Реферат
На тему: «Переходные процессы в электрических цепях с последовательно соединенными резисторами и катушками»
Преподаватель
Чита 2013
Переходные процессы в электрических цепях с последовательно соединенными резисторами и катушками
В данном разделе предполагается
не только практическое знакомство с
классическим методом расчета переходных
процессов, но и с особенностями
самих процессов в
5.4.1. Короткое замыкание в цепи с резистором и катушкой
Исследуем электромагнитные процессы в цепи, изображенной на рис. 5.2, происходящие после замыкания ключа.
Рассчитаем установившийся режим в цепи до коммутации (до замыкания ключа) и определим из него независимое начальное условие — ток в катушке в момент t = 0-, непосредственно предшествующий коммутации
i(0-) = i(0+) = E / (Rвн + R).
Найдем установившийся ток i после коммутации. Так как во вновь образованном контуре из катушки L и резистора R нет источника, то iy = 0.
Для определения свободной составляющей тока запишем по второму закону Кирхгофа уравнение электрического состояния цепи после коммутации:
Характеристическое уравнение имеет вид:
pL + R = 0.
Общее решение уравнения для свободной составляющей:
iсв = A ept,
где: А – постоянная интегрирования;
p = - R/L, c-1 – корень характеристического
уравнения.
Записав общий вид переходного тока катушки
i = iу + iсв = A ept,
приравниваем его значение i(0+) = A в точке t = 0+ к значению i(0-), найденному в п. 1. Получаем искомую константу
A = E / (Rвн + R) = I0.
Переходный ток i = iу + iсв при этом равен
где τ = L / R – постоянная времени цепи.
Постоянная времени – это время, в течение которого свободная составляющая процесса уменьшается в е = 2,72 раза по сравнению с начальным значением.
График изменения переходного тока показан на рис. 5.3.
Определим э.д.с. самоиндукции катушки
В момент коммутации эта э.д.с. равна напряжению на сопротивлении R, а в дальнейшем уменьшается по экспоненциальному закону. На основании изложенного можно сделать следующие выводы.
uL(0+) = I0R.
5.4.2. Включение цепи с резистором и катушкой на постоянное напряжение
Переходный ток в цепи, изображенной на рис. 5.4, представим в виде
i = iу + iсв.
1. До коммутации тока в катушке не было, следовательно,
iL(0-) = 0.
2. Установившаяся составляющая тока после коммутации
iу = U / R.
3. Свободная составляющая тока для цепи, описываемой дифференциальным уравнением первого порядка
iсв = A e-t/τ =A ept , p = - R / L.
4. По начальным условиям определим постоянную интегрирования А и свободную составляющую тока:
i(0) = iу(0) + iсв(0); i(0) = iу(0+) + iсв(0-);
или
0 = U / R + A; A = -U / R; iсв = -U / R · e-t/τ.
Переходный ток получается в виде
i = U / R (1 - e-t/τ).
Напряжение на катушке
Кривые изменения токов i, iy, iсв и напряжения на катушке uL показаны на рис. 5.5.
При включении рассматриваемого контура под постоянное напряжение ток в нем нарастает от нуля до установившегося значения. Скорость нарастания тока
изменяется по экспоненте с отрицательным показателем. В момент t = 0 эта скорость максимальна и равна U / L [А/с], со временем она падает практически до нуля, процесс выходит на установившийся режим.
В первый после коммутации момент t = 0+ ток в цепи еще равен нулю, и напряжение на катушке максимально uL = U, далее оно экспоненциально снижается до нуля.
5.4.3. Включение цепи с резистором и катушкой на синусоидальное напряжение
Если напряжение источника цепи (рис. 5.6)
u = Umsin(ωt + ψ),
то установившийся ток
iу = Um / Z sin(ωt + ψ - φ),
где:
– полное сопротивление цепи;
φ = arctg(ω L/R) - угол сдвига фаз между напряжением
и током.
Свободный ток определяется
iсв = A e-t/τ.
Суммируя установившуюся
и свободную составляющие, получим
выражение для переходного
i = iу + iсв = Um / Z sin(ωt + ψ - φ) + A e-t/τ.
используя независимые начальные условия при t = 0
i(0-) = i(0+) = 0,
находим постоянную интегрирования:
A = -Um / Z sin(ψ - φ).
Тогда переходный ток:
Зависимости переходного тока от времени при различных значениях разностей ψ - φ показаны на рис. 5.7. Их анализ позволяет сделать следующие выводы.
i = iу = Im sin(ωt) = Um / Z sin(ωt).