Автор работы: Пользователь скрыл имя, 06 Декабря 2015 в 19:57, реферат
Современные глобальные проблемы экологии и производства требуют дальнейшего повышения эффективности методов элементного анализа.
Особенно остро стоит проблема экспрессной, но вместе с тем правильной оценки загрязнения окружающей среды, вызванного антропогенными факторами.
Несмотря на достаточно разработанную теорию, остаётся насущной проблема контроля окружающей среды на предмет содержания тяжелых металлов с помощью методов, исторически оправдавших себя и надёжных.
Атомно-абсорбционный анализ является одним из наиболее широко применяемых методов. Он удобен и сравнительно лёгок в реализации, обладает хорошей воспроизводимостью результатов и широким спектром методик.
ВВЕДЕНИЕ 3
1. Атомно-абсорбционная спектрометрия 4
2. Примеры использования метода в анализе почв 8
3. Устройство и принцип работы атомно-абсорбционного спектометра 19
ВЫВОДЫ 24
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 26
Рекомендуется иметь отдельный набор посуды для приготовления растворов каждого элемента.
Приготовление растворов
Все растворы готовят на бидистиллированной (деионизованной) воде.
Раствор азотной кислоты, объемная доля 2%
В коническую колбу помещают 300-400 см3 бидистиллированной деионизованной воды, осторожно, при перемешивании вливают 10 см3 концентрированной азотной кислоты, доводят до 500 см3 бидистиллированной водой и перемешивают. Раствор устойчив при хранении в закрытом сосуде из полиэтилена, полипропилена или фторопласта длительное время. Контроль качества раствора азотной кислоты проводят ежедневно перед началом работы. Процедура контроля состоит в измерении массовой концентрации элементов в соответствии с п.7 методики. Если измеренное значение превышает 30% нижней границы диапазона измерения элемента (п.1), то раствор необходимо приготовить заново.
Приготовление рабочих растворов массовой концентрации 100мг/дм3
В мерную колбу вместимостью 50 см3 помещают при помощи пипетки 5 см3 государственного стандартного образца состава раствора соответствующего иона, доводят до метки 2 % -ным раствором азотной кислоты и перемешивают. Раствор устойчив при хранении в полиэтиленовой посуде в течение 1 месяца.
Приготовление рабочих растворов массовой концентрации 2мг/дм3
В мерную колбу вместимостью 100 см3 помещают при помощи пипетки 2 см3 рабочего раствора массовой концентрации 100 мг/дм3, приготовленного по п. 6.2.2.1, доводят до метки 2%-ным раствором азотной кислоты и перемешивают. Раствор устойчив при хранении в полиэтиленовой посуде в течении 2 недель.
Приготовление рабочих растворов массовой концентрации 1мг/дм3
В мерную колбу вместимостью 100 см3 помещают при помощи пипетки 1 см3 рабочего раствора массовой концентрации 100 мг/дм3, приготовленного по п. 6.2.2.1, доводят до метки 2%-ным раствором азотной кислоты и перемешивают. Раствор устойчив при хранении в полиэтиленовой посуде в течении 2 недель.
Приготовление рабочих растворов массовой концентрации 20мкг/дм3
В мерную колбу вместимостью 100 см3 помещают при помощи пипетки 2 см3 рабочего раствора массовой концентрации 1 мг/дм3, приготовленного по п. 6.2.2.3, доводят до метки 2%-ным раствором азотной кислоты и перемешивают. Раствор используют свежеприготовленным.
Приготовление рабочих растворов массовой концентрации 10мкг/дм3
В мерную колбу вместимостью 100 см3 помещают при помощи пипетки 1 см3 рабочего раствора массовой концентрации 1 мг/дм3, приготовленного по п. 6.2.2.3, доводят до метки 2%-ным раствором азотной кислоты и перемешивают. Раствор используют свежеприготовленным.
Приготовление рабочих растворов массовой концентрации 1мкг/дм3
В мерную колбу вместимостью 50 см3 помещают при помощи пипетки 5 см3 рабочего раствора массовой концентрации 10 мкг/дм3, приготовленного по п. 6.2.2.5, доводят до метки 2%-ным раствором азотной кислоты и перемешивают. Раствор используют свежеприготовленным.
Градуировка спектрометра
Для построения градуировочной зависимости аналитического сигнала от массы элемента в графитовую печь атомизатора вводят дозатором необходимый объем (от 5 до 40 мм3) градуировочных растворов соответствующего элемента. Диапазоны построения градуировочной зависимости приведены в таблице 2. Необходимо использовать не менее 5 точек в указанном в таблице 2 диапазоне массы. При построении градуировочной зависимости следует начинать с меньших значений массы элемента и от них переходить к более высоким. В таблице 3 приведены рекомендуемые для внесения объемы градуировочных растворов.
Рекомендуемые режимы обработки градуировочных растворов и проб приведены в таблице 4.
Измерение с каждой массой элемента проводят 5 раз в соответствии с Руководством по эксплуатации спектрометра (далее РЭ) и рассчитывают среднее арифметическое значение полученных значений. Затем запускают процедуру «Ручная градуировка» и вводят с клавиатуры компьютера массу элемента (в пиктограммах) и соответствующие им величины средних значений аналитического сигнала. Полученную градуировочную зависимость можно просмотреть в режиме «Градуировка»/«Просмотр».
Таблица 3
Диапазоны построения градуировочных зависимостей
Элемент |
Диапазон измерения, мг/дм3 |
Диапазон масс, пг |
Марганец |
От 0.0003 до 0.050 включительно |
10 – 400 |
Медь |
От 0.0005 до 0.070 включительно |
20 – 600 |
Железо |
От 0.005 до 0.060 включительно |
40 – 600 |
Цинк |
От 0.1 до 8.0 включительно |
5000 – 80000 |
Хром |
От 0.001 до 0.1 включительно |
40 – 600 |
Таблица 4
Рекомендуемые способы внесения элемента в атомизатор
Масса, пг |
Концентрация градуировочного раствора, мкг/дм3 |
Объем градуировочного раствора, мм3 |
10 |
1.0 |
10 |
20 |
1.0 |
20 |
40 |
1.0 |
40 |
100 |
10.0 |
10 |
200 |
10.0 |
20 |
400 |
10.0 |
40 |
600 |
20.0 |
30 |
800 |
20.0 |
40 |
При высоких значениях массы элемента может наблюдаться отклонение градуировочной зависимости от линейной. В этом случае рекомендуется ограничиться более узким, чем в указано в табл. 2 интервалом массы определяемого элемента для построения градуировочной зависимости.
Контроль стабильности градуировочной зависимости состоит в проведении не менее двух параллельных измерений массовой концентрации растворов, заново приготовленных по п. 6.2.2, перед началом работы, и после анализа 15-20 проб.
Градуировка признается стабильной, если расхождение между заданным и измеренным значением концентраций не превышает 15% от заданного значения. В этом случае процесс измерений признается подконтрольным, и результаты измерений массовой концентрации элемента в пробах за период между двумя последовательными процедурами контроля стабильности градуировочной характеристики принимаются в качестве окончательных результатов.
При несоответствии полученных результатов указанному нормативу процесс градуировки необходимо повторить.
Вводят дозатором в графитовую печь атомизатора от 5 до 40 мм3 анализируемой пробы (в зависимости от ожидаемого содержания) и производят измерение в соответствии с выбранным режимом работы (таб. 4). Режимы при измерении градуировочных растворов и проб (за исключением стадии пиролиза) должны совпадать. Температура и продолжительность пиролиза зависят в первую очередь от матричного состава пробы. При анализе сравнительно чистых или разбавленных сточных вод режим пиролиза можно не использовать.
Порядок проведения измерений осуществляется в соответствии с Руководством по эксплуатации спектрометра. Объем дозированной пробы вводится с клавиатуры компьютера по запросу программы. После завершения измерения на дисплей компьютера выводится величина интегрального аналитического сигнала, масса и концентрация определяемого компонента. Полученные данные автоматически протоколируются. Анализ пробы осуществляется минимум 2 раза.
Разработан простой и экспрессный способ кислотного разложения почв и биологических объектов при воздействии ультразвуком для определения ртути, свинца и других тяжелых металлов из одного раствора. На этой основе предложены новые экспрессные методики последовательного атомно-абсорбционного определения ртути на ртутном анализаторе «Юлия-2» и свинца, цинка, меди – на пламенном атомно-абсорбционном спектрометре «AAS-1» в пламени пропан-воздух.
Проблему повышения чувствительности определения свинца и многоэлементного анализа решали спектрографическим методом на дифракционном спектрографе ДФС- 8–1 после упаривания раствора пробы с углеродным коллектором и введением сухого концентрата в дуговой разряд воздушной струей на спектральной установке «Полюс – 2».
Методики были применены к анализу почв, донных отложений и волос человека.
Было изучено распределение Hg , Pb, Zn , Cu в почвах и в выделенных из них гуминовых кислотах по разрезу учебного полигона ИГУ, разрабатываемого совместными усилиями преподавателей и студентов биолого-почвенного, географического и химического факультетов.
Проведена экспертиза почв Усольского района, находящихся под несанкционированной свалкой УПО «Химпром», и было выявлено загрязнение по натрию, бору и хрому.
Представлены содержания Hg , Pb и Zn в волосах детей 6 и 12 лет Академгородка г.Иркутска, которые были исследованы с целью медико-экологического мониторинга в рамках довузовской программы со школьниками «Экология и здоровье».
Выполнен аттестационный анализ разработанных в Институте геохимии СО РАН стандартных образцов состава донных отложений оз. Байкал БИЛ–1 и БИЛ–2 на ртуть. Определены содержания исследуемых металлов в донных отложениях Братского водохранилища. Подтверждены данные о повышении содержания ртути (ртутная проблема водохранилищ).
Спектрометрические характеристики растворов гумуса, исследование их комплексообразования с металлами.
Исследование комплексообразующих (КО) свойств гуминовых веществ (ГВ) проводят с целью их использования для уменьшения токсичности тяжёлых металлов в природных объектах, что представляет интерес для агрохимии, почвоведения и курортологии. Сложный состав ГВ, большая зависимость их строения от географического положения объекта, из которого они выделены (почвы, уголь, торф, сапропель, вода), не позволяют распространять результаты исследований и методологические подходы ко всем ГВ.
Методом ААС установлено, что в образцах ГВ содержатся: К, Са, Mg от 1 до 10%; Fe, Zn, Na от 10-2 до 10-1%; остальные металлы от 10-4 до 10-3%. Определяющее влияние на процесс КО ГВ с Cu2+ и Pb2+ оказывает присутствие металлов первой группы. Обработка ГВ 0.1 н HCl в течение 12 часов ведет к потере К и Са. Использование Н-формы ГВ более перспективно для КО с металлами.
Электронные спектры водных растворов ГВ и их растворов с Cu2+, Pb2+ в ацетатно-аммиачных буферах (при рН 5, 6, 7, 8) показали, что растворы ГВ в воде имеют интенсивные полосы поглощения, например λ1max=207-208 нм, которые в буферных растворах смещаются в длинноволновую область до λ2max=235 нм. КО ГВ с ионами металлов имеет сложный характер. Поэтому для изучения КО были также использованы ИК-спектры. Образование связи карбоксилат-ион-металл устанавливали по исчезновению полосы поглощения 1720 см-1 и появлению полосы 1580 см-1.
На основе полученных данных можно прогнозировать поведение ионов металлов в природных объектах, в том числе при содержаниях на уровне ПДК.
Термическая атомно-абсорбционная спектроскопия как метод диагностики форм нахождения тяжелых металлов в объектах окружающей среды и минералах.
Термический атомно-абсорбционный анализ (ТАА) является совмещением термического и атомно-абсорбционного анализа. Метод основывается на одновременной регистрации сигнала абсорбционности от спектрометра и температуры пробы. При этом диагностическими характеристиками являются температурные параметры выхода элементов, зависящие от форм присутствия данных элементов в минеральном веществе. Предварительно производится калибровка этих параметров по синтетическим минералам с заданными формами нахождения элемента. В настоящее время метод разработан для анализа форм ртути, кадмия, свинца, цезия. Данный метод позволяет решать широкий спектр задач геохимии, неорганической химии и охраны окружающей среды.
Проведены системные исследования форм нахождения тяжелых металлов (Hg и Cd) в осадках водохранилищ Ангарского каскада, донных отложений озера Байкал и акватории Охотского, Берингова и Японского морей. Установлено, что основной поток ртути в озеро Байкал и его донные отложения направлен из атмосферы. В донных отложениях Братского водохранилища обнаружено широкое развитие сорбционных форм кадмия, что необходимо учитывать при мониторинге кадмиевого загрязнения на территории Иркутской области, так как он может быть токсичным для органических объектов водохранилищ.
ТАА позволил показать различие в механизмах поглощения микроэлементов при исследовании образования устойчивых форм Cd и Hg в пирротине и галените (в условиях гидротермального синтеза при повышенных температурах и давлениях). Это стало возможным благодаря сопряжению методов ТАА и спектроскопии поверхности. Большое влияние на механизм захвата оказывают дефекты структуры исходных минералов. Особое значение имеет механизм с участием так называемых «неавтономных фаз», так как они более устойчивые по сравнению с поверхностными комплексами.
3. Устройство
и принцып работы атомно-
Атомно-абсорбционный спектральный анализ основан на селективном поглощении УФ – или видимого излучения атомами газа.
Для перевода пробы в газообразное атомарное состояние применяются два вида устройств атомизации – пламенные и электротермические.
В качестве источника излучения обычно применяют лампу с полым катодом из определяемого металла. Интервал длин волн спектральной линии, испускаемой источником сета, и линии поглощения того же самого элемента в пламени очень узок, поэтому поглощение других элементов практически не сказывается на результатах анализа.