Борьба корпускулярной и волновой концепций

Автор работы: Пользователь скрыл имя, 21 Января 2013 в 14:51, доклад

Краткое описание

Существует две конкурирующие теории – корпускулярная и волновая теории света.
Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При этом одни из них полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет.

Вложенные файлы: 1 файл

КСЕ теории света..doc

— 53.00 Кб (Скачать файл)

Существует  две конкурирующие теории – корпускулярная и волновая теории света.

Подавляющее большинство  древних философов и ученых рассматривало  свет как некие лучи, соединяющие  светящееся тело и человеческий глаз. При этом одни из них полагали, что  лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела большое число последователей, среди которых был Эвклид. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Эвклид писал: "Испускаемые глазами лучи распространяются по прямому пути". Такого же взгляда придерживался Птолемей и многие другие ученые и философы.

Однако позже, уже в средние века, такое представление  о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались атомисты Демокрит, Эпикур, Лукреций.

Последняя точка  зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.

Другая точка зрения на природу света была высказана Аристотелем. Он рассматривал свет как распространяющееся в пространстве (в среде) действие или движение. Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.

К середине XVII века накопились факты, которые толкали  научную мысль за пределы геометрической оптики. Одним из первых ученых, подтолкнувшим  научную мысль к теории волновой природы света, был чешский ученый Марци. В 1648 им открыто явление дисперсии света.

В XVII в. в связи  с развитием оптики вопрос о природе  света стал вызывать все больший  интерес. При этом постепенно происходит образование двух противоположных  теорий света: корпускулярной и волновой. Для развития корпускулярной теории света была более благоприятная почва. Действительно, для геометрической оптики представление о том, что свет есть поток особых частиц, было вполне естественным. Прямолинейное распространение света, а также законы отражения и преломления хорошо объяснялись с точки зрения этой теории.

Общее представление  о строении вещества также не вступало в противоречие с корпускулярной теорией света. В то время в  основе взглядов на строение вещества лежала атомистика. Все тела состоят  из атомов. Между атомами существует пустое пространство. В частности, тогда считали, что межпланетное пространство является пустым. В нем и распространяется свет от небесных тел в виде потоков световых частиц. Поэтому вполне естественно, что в XVII в. было много физиков, которые придерживались корпускулярной теории света. В это же время начинает развиваться и представление о волновой природе света. Родоначальником волновой теории света можно считать Декарта.

Излучение чёрного тела, фотоэффекта, эффект Комптона – служат доказательством квантовых (корпускулярных) представлений о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой, так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств – непрерывных (волны) и дискретных (фотоны), которые взаимно дополняют друг друга.

Более детальное  рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного  поля световой волны, не следует противопоставлять  свойствам дискретности, характерным  для фотона. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определённые закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные – в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона, и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона, и тем труднее обнаруживается волновые свойства (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решётки кристаллов).

Взаимосвязь между  двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей рассмотрения света.

Волновые свойства света

  • Дисперсия

Ньютон обратился к  исследованию цветов, наблюдаемых при преломлении света, в связи с попытками усовершенствования телескопов. Стремясь получить линзы возможно лучшего качества, Ньютон убедился, что главным недостатком изображений является наличие окрашенных краёв. Исследуя окрашивание при преломлении, Ньютон сделал свои величайшие оптические открытия .

- свет различного цвета  характеризуется различными показателями  преломления в данном веществе (дисперсия);

- белый цвет есть  совокупность простых цветов.

Мы знаем в настоящее  время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом: показатель преломления вещества зависит от длины световой волны. Обычно он увеличивается по мере уменьшения длины волны.

 

 

  • Дифракция (Гримальди)

У световой волны не происходит изменения геометрической формы  фронта при распространении в  однородной среде. Однако если распространение  света осуществляется в неоднородной среде, в которой, например, находятся  непрозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдается искажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, где, согласно законам геометрической оптики, должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

Итак, дифракция света  в узком смысле – явление огибания светом контура непрозрачных тел  и попадание света в область  геометрической тени; в широком смысле – всякое отклонение при распространении света от законов геометрической оптики. Если в среде имеются мельчайшие частицы (туман), или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света, и термин "дифракция" не употребляется.

Различают два вида дифракции  света. Изучая дифракционную картину  в точке наблюдения, находящейся  на конечном расстоянии от препятствия, мы имеем дело с дифракцией Френеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах – дифракции Фраунгофера.

Теория дифракции рассматривает  волновые процессы в тех случаях, когда на пути распространения волны имеются какие-либо препятствия.

С помощью теории дифракции  решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн  над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, – всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

  • Поляризация (Гюйгенс)

Явления интерференции  и дифракции, послужившие для  обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин. Гюйгенс

 

 

Квантовые свойства света

  • Фотоэффект

Гипотеза Планка о  квантах послужила основой для объяснения явления фотоэлектрического эффекта, открытого в 1887г. немецким физиком Генрихом Герцем.

Явление фотоэффекта  обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра. Если пластине и стержню  передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает ультрафиолетовое излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света могут освобождаться отрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы – электроны.

Фотоэффекты бывают нескольких видов: внешний и внутренний фотоэффект, вентильный фотоэффект и ряд других эффектов.

Внешним фотоэффектом называют явление вырывания электронов из вещества под действием падающего  на него света.

Внутренним фотоэффектом называют появление свободных электронов и дырок в полупроводнике в  результате разрыва связей между атомами за счет энергии света, падающего на полупроводник.

Вентильным фотоэффектом называют возникновение под действием  света электродвижущей силы в  системе, содержащей контакт двух различных  полупроводников или полупроводника и металла.

  • Эффект Комптона

Наиболее полно корпускулярные свойства света проявляются в  эффекте Комптона. Американский физик  А. Комптон (1892 – 1962), исследуя в 1923 г. рассеяние  монохроматического рентгеновского излучения  веществами с лёгкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение.

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и гамма-излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта  Комптона дано на основе квантовых  представлений о природе света. Если считать, как это делает квантовая  теория, что излучение имеет корпускулярную природу.

Эффект Комптона наблюдается  не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона  его отдача "просматривается" лишь при рассеянии фотонов очень  высоких энергий.

Как эффект Комптона, так и фотоэффект на основе квантовых представлений  обусловлены взаимодействием фотонов  с электронами. В первом случае фотон  рассеивается, во втором – поглощается. Рассеяние происходит при взаимодействии фотона со свободными электронами, а фотоэффект – со связанными электронами. Можно показать, что при столкновении фотона со свободными электронами не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т. е. эффект Комптона.

 

Итак, свет корпускулярен в том  смысле, что его энергия, импульс, масса и спин локализованы в фотонах, а не размыты в пространстве, но не в том, что фотон может находиться в данном точно определенном месте пространства. Свет ведет себя как волна в том смысле, что распространение и распределение фотонов в пространстве носят вероятный характер: вероятность того, что фотон находится в данной точке, определяется квадратом амплитуды в этой точке. Но вероятностный (волновой) характер распределения фотонов в пространстве не означает, что фотон в каждый момент времени находится в какой-то одной точке.

Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью света), то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства, и свет можно рассматривать или как волну, или как частицы (корпускулы).

 


Информация о работе Борьба корпускулярной и волновой концепций