Концепция современного естествознания

Автор работы: Пользователь скрыл имя, 28 Декабря 2010 в 15:39, контрольная работа

Краткое описание

Системность материи заключается в том, что любой объект одновременно является самостоятельной сложной системой и элементом другой, более сложной системы. Совокупность связей между элементами системы образует структуру системы. Существует два основных типа связи между элементами систем — горизонтальные и вертикальные связи. Горизонтальные связи — это связи координации между элементами и системами одного уровня.

Содержание

1. Структурные уровни организации материи.
2. Современные методы проверки познанных законов природы.
3. Неорганическая химия.
4. Элементарные частицы. Мюоны.
5. Основные законы сохранения в природе.
6. Что такое симметрия. Операции симметрии.
7. Общая характеристика органических веществ. Классификация органических веществ.
8. Структура живых организмов. Строение клетки.

Вложенные файлы: 1 файл

kce 1.doc

— 278.00 Кб (Скачать файл)
fy">   Механическая энергия не сохраняется,  если между телами действуют  силы трения. Автомобиль, двигавшийся  по горизонтальному участку дороги после выключения двигателя, проходит некоторый путь и под действием сил трения останавливается. Во время торможения автомобиля произошло нагревание тормозных колодок, шин автомобиля и асфальта. В результате действия сил трения кинетическая энергия автомобиля не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

   Таким образом, при любых физических  взаимодействиях энергия не возникает,  а только превращается из одной  формы в другую. Этот экспериментально  установленный факт называется законом сохранения и превращения энергии.

   Источники энергии на земле  велики и разнообразны. Когда-то  в древности люди знали только  один источник энергии — мускульную  силу и силу домашних животных. Энергия возобновлялась за счет  пищи. Теперь большую часть работы делают машины, источником энергии для них служат различные виды ископаемого топлива: каменный уголь, торф, нефть, а также энергия воды и ветра.

   Если проследить «родословную»  всех этих разнообразных видов  энергии, то окажется, что все  они являются энергией солнечных лучей. Энергия окружающего нас космического пространства аккумулируется Солнцем в виде энергии атомных ядер, химических элементов, электромагнитных и гравитационных полей. Солнце, в свою очередь, обеспечивает Землю энергией, проявляющейся в виде энергии ветра и волн, приливов и отливов, в форме геомагнетизма, различного вида излучений (в том числе и радиоактивности недр и т.д.), мускульной энергии животного мира.

   Геофизическая энергия высвобождается  в виде природных стихийных  явлений (вулканизм, землетрясения, грозы, цунами и т.д.), обмена веществ в живых организмах (составляющих основу жизни), полезной работы по перемещению тел, изменению их структуры, качества, передачи информации, запасения энергии в различного рода аккумуляторах, конденсаторах, в упругой деформации пружин, мембран.

   Любые формы энергии, превращаясь  друг в друга посредством механического  движения, химических реакций и  электромагнитных излучений, в  конце концов переходят в тепло  и рассеиваются в окружающее  пространство. Это явление проявляется в виде взрывных процессов, горения, гниения, плавления, испарения, деформации, радиоактивного распада. Происходит круговорот энергии в природе, характеризующийся тем, что в космическом пространстве реализуется не только хаотизация, но и обратный ей процесс — упорядочивание структуры, которые наглядно прослеживаются прежде всего в звездообразовании, трансформации и возникновении новых электромагнитных и гравитационных полей, и они снова несут свою энергию новым «солнечным системам». И все возвращается на круги своя.

   Закон сохранения механической  энергии был сформулирован немецким  ученым А. Лейбницем. Затем  немецкий ученый Ю.Р. Майер,  английский физик Дж. Джоуль и  немецкий ученый Г. Гельмгольц  экспериментально открыли законы  сохранения энергии в немеханических явлениях.

   Таким образом, к середине XIX в.  оформились законы сохранения  массы и энергии, которые трактовались  как законы сохранения материи  и движения. В начале XX в. оба  эти закона сохранения подверглись  коренному пересмотру в связи с появлением специальной теории относительности: при описании движений со скоростями, близкими к скорости света, классическая ньютоновская механика была заменена релятивистской механикой. Оказалось, что масса, определяемая по инерциальным свойствам тела, зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Понятие энергии тоже подверглось изменению: полная энергия оказалась пропорциональна массе (Е = mс2). Таким образом, закон сохранения энергии в специальной теории относительности естественным образом объединил законы сохранения массы и энергии, существовавшие в классической механике. По отдельности эти законы не выполняются, т.е. невозможно охарактеризовать количество материи, не принимая во внимание ее движение и взаимодействие.

   Эволюция закона сохранения энергии  показывает, что законы сохранения, будучи почерпнутыми из опыта,  нуждаются время от времени  в экспериментальной проверке  и уточнении. Нельзя быть уверенным,  что с расширением пределов человеческого познания данный закон или его конкретная формулировка останутся справедливыми. Закон сохранения энергии, все более уточняясь, постепенно превращается из неопределенного и абстрактного высказывания в точную количественную форму.

10.2.1.5. Законы сохранения в микромире

   Большую роль законы сохранения  играют в квантовой теории, в  частности, в физике элементарных  частиц. Законы сохранения определяют  правила отбора, нарушение которых  привело бы к нарушению законов  сохранения. В дополнение к перечисленным законам сохранения, имеющим место в физике макроскопических тел, в теории элементарных частиц возникло много специфических законов сохранения, позволяющих интерпретировать наблюдающиеся на опыте правила отбора. Таков, например, закон сохранения барионного или ядерного заряда, выполняющегося при всех видах взаимодействий. Согласно ему, ядерное вещество сохраняется: разность между числом тяжелых частиц (барионов) и числом их античастиц не изменяется при любых процессах. Легкие элементарные частицы — лептоны (электроны, нейтрино и т.д.) также сохраняются.

   Существуют и приближенные законы  сохранения, выполняющиеся в одних  процессах и нарушающиеся в  других. Такие законы сохранения  имеют смысл, если можно указать  класс процессов, в которых  они выполняются. Например, законы  сохранения странности, изотопического спина, четности строго выполняются в процессах, протекающих за счет сильного взаимодействия, но нарушаются в процессах слабого взаимодействия. Электромагнитное взаимодействие нарушает закон сохранения изотопического спина. Таким образом, исследования элементарных частиц вновь напомнили о необходимости проверять существующие законы сохранения в каждой области явлений. Проводятся сложные эксперименты, имеющие целью обнаружить возможные слабые нарушения законов сохранения в микромире.

   Проверка механических законов сохранения есть проверка соответствующих фундаментальных свойств пространства — времени. Долгое время считали, что кроме перечисленных элементов симметрии (сохранение энергии связано с однородностью времени, сохранение импульса — с однородностью пространства), пространство — время обладает зеркальной симметрией, т.е. инвариантностью относительно пространственной инверсии. Тогда должна была бы сохраняться четность. Однако в 1857 г. было экспериментально обнаружено несохранение четности в слабом взаимодействии, поставившее вопрос о пересмотре взглядов на симметрию пространства — времени и фундаментальных законов сохранения (в частности, на законы сохранения энергии и импульса). 
 
 
 
 

    6. Что такое симметрия. Операции  симметрии.

     Симметрия—однородность, пропорциональность, гармония, инвариантность структуры материального объекта относительно его преобразований. Это признак полноты и совершенства. Лишившись элементов симметрии, предмет утрачивает свое совершенство и красоту, т.е. эстетическое понятие.

        Эстетическая окрашенность симметрии в наиболее общем понимании — это согласованность или уравновешенность отдельных частей объекта, объединенных в единое целое, гармония пропорций. Многие народы с древнейших времен владели представлениями о симметрии в широком смысле как эквивалентности уравновешенности и гармонии. В геометрических орнаментах всех веков запечатлены неиссякаемая фантазия и изобретательность художников и мастеров. Их творчество было ограничено жесткими рамками, требованиями неукоснительно следовать принципам симметрии. Трактуемые несравненно шире, идеи симметрии нередко можно обнаружить в живописи, скульптуре, музыке, поэзии. Операции симметрии часто служат канонами, которым подчиняются балетные па: именно симметричные движения составляют основу танца. Во многих случаях именно язык симметрии оказывается наиболее пригодным для обсуждения произведений изобразительного искусства, даже если они отличаются отклонениями от симметрии или их создатели стремятся умышленно ее избежать.

    Симметрия применяется в технике и архитектуре. 

   Познакомимся  с основными понятиями классической симметрии, операциями симметрии. Можно выделить следующие операции симметрии:

   -   отражение в плоскости симметрии (отражение в зеркале);

   -   поворот вокруг оси симметрии (поворотная симметрия);

   -   отражение в центре симметрии (инверсия);

   -   перенос (трансляция) фигуры на расстояние;

   -   винтовые повороты.

   1. Отражение в плоскости симметрии  Отражение — это наиболее известная  и чаще других встречающаяся в природе разновидность симметрии. Зеркало в точности воспроизводит то, что оно «видит», но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется левой, так как пальцы расположены на ней в обратном порядке. Всем, наверное, с детства знаком фильм «Королевство кривых зеркал», где имена всех героев читались в обратном порядке.

   Зеркальную  симметрию можно обнаружить повсюду: в листьях и цветах растений, архитектуре, орнаментах. Человеческое тело, если говорить лишь о наружном виде, обладает зеркальной симметрией, хотя и не вполне строгой. Более того, зеркальная симметрия свойственна телам почти всех живых существ, и такое совпадение отнюдь не случайно. Важность понятия зеркальной симметрии вряд ли можно переоценить.

   Зеркальной  симметрией обладает все, допускающее  разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая  их плоскость называется плоскостью зеркального отражения, или просто зеркальной плоскостью. Эту плоскость можно назвать элементом симметрии, а соответствующую операцию — операцией симметрии.

   Отражение в зеркале — это один из способов повторения фигуры, приводящий к возникновению симметричного узора. Если использовать не одно, а два зеркала, то можно получить устройство, названное калейдоскопом, открытое в 1819 г. Д. Брюстером. В калейдоскопе совмещаются два вида симметрии: зеркальная и поворотная. Расположив зеркала под определенным углом, можно увидеть отражение, отражение отражения и т.д. Вечно изменяющаяся череда узоров завораживает взор каждого.

   Если  два зеркала не пересекаются, а  установлены параллельно друг другу, то вместо орнамента с элементами, расположенными по кругу, получается бесконечный узор, который повторяется и напоминает бордюр или ленту из ткани.

   С трехмерными симметричными узорами  мы сталкиваемся ежедневно: это многие современные жилые здания, а иногда и целые кварталы, ящики и коробки, громоздящиеся на складах, атомы вещества в кристаллическом состоянии образуют кристаллическую решетку — элемент трехмерной симметрии. Во всех этих случаях

   правильное  расположение позволяет экономно использовать пространство и обеспечивать устойчивость.

   2. Поворотная симметрия

   Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Примером может служить детская игра «вертушка» с поворотной симметрией. Во многих танцах фигуры основаны на вращательных движениях, нередко совершаемых только в одну сторону (т.е. без отражения), например, хороводы.

   Листья  и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворчаиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

   3.  Отражение в центре симметрии

   Примером  объекта наивысшей симметрии, характеризующим эту операцию симметрии, является шар. Шаровые формы распространены в природе достаточно широко. Они обычны в атмосфере (капли тумана, облака), гидросфере (различные микроорганизмы), литосфере и космосе. Шаровую форму имеют споры и пыльца растений, капли воды, выпущенной в состоянии невесомости на космическом корабле. На метагалактическом уровне наиболее крупными шаровыми структурами являются галактики шаровой формы. Чем плотнее скопление галактик, тем ближе оно к шаровой форме. Звездные скопления — тоже шаровые формы.

   4.  Трансляция, или перенос фигуры на расстояние

   Трансляция, или параллельный перенос фигуры на расстояние — это любой неограниченно повторяющийся узор. Она может быть одномерной, двумерной, трехмерной. Трансляция в одном и том же или противоположных направлениях образует одномерный узор. Трансляция по двум непараллельным направлениям образует двумерный узор. Паркетные полы, узоры на обоях, кружевные ленты, дорожки, вымощенные кирпичом или плитками, кристаллические фигуры образуют узоры, которые не имеют естественных границ.

Информация о работе Концепция современного естествознания