Автор работы: Пользователь скрыл имя, 20 Октября 2013 в 19:11, доклад
Наука никогда не стоит на месте, научное познание постоянно развивается. Тем не менее, XIX век нельзя не выделить в истории развития естествознания. XIX век был веком перелома. В нем уходящая культура, уходящее мировоззрение, носившее метафизический характер, тесно переплетены с тем, что идет на смену. Недаром это время называют не только «веком уходящего дворянства», но и веком промышленной революции, в корне изменившей всю систему человеческих ценностей.
Развитием концепции
Максвелла было измерение П.Н. Лебедевым
давления света, предсказанного Максвеллом,
а также использование
Концепции классической термодинамики. Возникновение термодинамики. Термодинамика – это физическая наука, которая исследует причины тепловых явлений. Тепловые явления отличаются от механических и электромагнитных тем, что тепловые процессы самопроизвольно идут лишь в одном направлении и что тепловые процессы осуществляются лишь в макроскопических масштабах, а поэтому используемые для описания тепловых процессов понятия и величины (температура, количество теплоты и т.д.) также имеют только макроскопический смысл (о температуре, например, можно говорить применительно к макроскопическому телу, но не к молекуле или атому). Вместе с тем знание строения вещества необходимо для понимания законов тепловых явлений.
Исторически термодинамика возникла как наука, изучающая переход теплоты в механическую работу, и представляла собой теорию тепловых машин.
Теоретической основой термодинамики служит молекулярно-кинетическая теория. В ее основе лежат следующие положения:
любое тело состоит из большого числа малых твердых частиц – молекул и атомов;
молекулы любого вещества находятся в беспорядочном, или хаотическом, движении;
молекулы взаимодействуют друг с другом, скорость движения молекул зависит от температуры вещества.
Тело, рассматриваемое с термодинамической позиции, является неподвижным, не обладающим механической энергией; но оно обладает внутренней энергией. Это внутренняя энергия может увеличиваться или уменьшаться. Передача энергии может осуществляться путем передачи от одного тела к другому при совершении над ними работы и путем теплообмена. Во втором случае внутренняя энергия переходит от более нагретого тела к менее нагретому без совершения работы. Переданную энергию называют количеством теплоты, а передачу энергии - теплопередачей. В общем случае оба процесса могут осуществляться одновременно, когда тело при утрате внутренней энергии может совершать работу и передавать теплоту другому телу. К пониманию этого ученые пришли не сразу. Для XVIII и первой половине XIX вв. было характерно понимать теплоту как невесомую жидкость. Такую жидкость называли теплородом. Согласно этой концепции теплота переходит от одного тела к другому, сохраняя свое общее количество, подобно жидкости, переливаемой из одного сосуда в другой. Также полагали, что теплород перетекает по телу как вода по трубам. Однако существовали факты, которые не укладывались в теорию теплорода: было обнаружено, что в случае механического перемещения и сопровождающего его трения количество выделяемого тепла не зависит от объема вещества, но зависит от скорости перемещения и силы трения. Это явление укладывалось в концепцию теплоты как меры движения. Таким образом, в противоречие теории теплорода этому факту потребовало создания иной теории тепловых явлений.
Возникновение собственно термодинамики начинается с работы Сади Карно. Исследуя практическую задачу получения движения из тепла применительно к паровым машинам, он понял, что принцип получения движения из тепла необходимо рассматривать не только по отношению к паровым машинам, но к любым мыслимым тепловым машинам. Так был сформулирован общий метод решения задачи - термодинамический, заложивший основу термодинамики. Определяя коэффициент полезного действия тепловых машин, Карно ввел свой знаменитый цикл, состоящий из двух изотермических (происходящих при постоянной температуре) и двух адиабатических (без притока и отдачи тепла) процессов. КПД цикла Карно не зависит от рабочего вещества, а зависит лишь от температуры нагревателя и холодильника. КПД любой тепловой машины не может быть при тех же температурах теплоотдатчика и теплоприемника выше КПД цикла Карно.
Карно первым вскрыл связь теплоты с работой. Но он исходил из концепции теплорода. Вместе с тем Карно уже понял, что работа паровой машины определяется всеобщим законом перехода тепла от более высоких к более низким температурам, т.е. что не может быть беспредельного воспроизведения движущей силы без затрат теплорода. Таким образом, работа представлялась как результат перепада теплорода с высшего уровня на низшие. Иначе говоря, теплота может создавать работу лишь при наличии разности температур. По своему смыслу это составляет содержание второго начала термодинамики. Осознавая недостатки теории теплорода, Карно в конце концов отказывается от признания теплоты неизменной по количеству субстанцией и дает значение механического эквивалента теплоты. Карно заложил основы термодинамики как раздела физики, изучающего наиболее общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями. Термодинамика стала развиваться на основе фундаментальных принципов или начал, являющихся обобщением результатов многочисленных наблюдений и экспериментов.
Первое начало термодинамики. Первое начало термодинамики – это закон сохранения энергии в применении к термодинамическим процессам. Оно гласит: «при сообщении термодинамической системе определенного количества теплоты в общем случае происходит при приращении внутренней энергии системы и она совершает работу против внешних сил». Идея о том, что теплота - не субстанция, а сила (энергия), одной из форм которой и является теплота, причем эта сила, в зависимости от условий, выступает в виде движения, электричества, света, магнетизма, теплоты, которые могут превращаться друг в друга, существовала в умах исследователей. Для превращения этой идеи в ясное и точное понятие, необходимо было определить общую меру этой силы. Это сделали, независимо друг от друга, Р. Майер, Д. Джоуль и Г. Гельмгольц – первооткрыватели закона сохранения энергии.
Р. Майер первым сформулировал
закон эквивалентности
Второе начало термодинамики.
Это закон возрастания
В.Томсон, сформулировав
принцип невозможности создания
вечного двигателя второго
Через 20 лет Клаузиус приходит к тому же выводу, сформулировав второе начало термодинамики в виде: энтропия Вселенной стремится к максимуму. (Под энтропией он понимал величину, представляющую собой сумму всех превращений, которые должны были иметь место, чтобы привести систему в ее нынешнее состояние).
Для распространения второго начала термодинамики на другие необратимые процессы было введено понятие энтропии как меры беспорядка. Для изолированных систем (не пропускающих тепло) второе начало термодинамики можно выразить следующим образом: энтропия системы никогда не уменьшается. Система, находящаяся в состоянии равновесия, имеет максимальную энтропию.
Говоря о втором начале, нельзя не упомянуть имя Людвига Больцмана, предпринявшего попытку объяснить, почему порядок уступает место беспорядку. В 1871 году Больцман указал, что второй закон термодинамики может быть выведен из классической механики только с помощью теории вероятности. Ученый показал, что энтропия термодинамического состояния пропорциональна вероятности этого состояния и что вероятности состояний могут быть рассчитаны на основании отношения между численными характеристиками соответствующих этим состояниям распределений молекул. Это так называемая «Н(аш)-теорема» стала вершиной учения Больцмана о мироздании. Своей Н-теоремой Л.Больцман заявил, что «тепловая смерть – блеф. Никакого конца света не предвидится. Второе начало надо применять по отношению к отдельным атомам и молекулам».4 Из теоремы следовал вывод о том, что энтропия может только возрастать - таково поведение термодинамических систем во времени.
Вокруг Н-теоремы мгновенно разгорелись дискуссии. Суть заключается в том, что с помощью одной основанной на механике Ньютона молекулярной теории доказать постоянный рост энтропии замкнутой системы нельзя, поскольку ньютоновская механика симметрична во времени любое движение атомов, основанное на законах ньютоновской механики, может быть представлено как происходящее в обратном направлении. Т.к. асимметрию нельзя вывести из симметрии, то теорема Больцмана (которая на основе лишь одной механики Ньютона утверждает, что возрастание энтропии асимметрично во времени) не может быть верной - для доказательства необходимо было к законам механики добавить и асимметрию. Так что чисто механическая интерпретация закона возрастания энтропии оказывалась несостоятельной. Н-теорема Больцмана описывает механизм перехода газа из состояния с низкой энтропией в равновесное, но не объясняет, почему это происходит в одном и том же направлении во времени, а именно из прошлого в будущее. А раз это так, то больцмановская модель лишается временной асимметрии.
Но временная асимметрия - это реальный факт. Упорядоченность реальных систем может возникать за счет внешних воздействий, а не за счет внутренних беспорядочных. В реальности все системы формируются под воздействием окружающей среды. В реальном мире больцмановских систем нет.
Таким образом, дискуссия по поводу второго начала термодинамики способствовала уяснению того, что второе начало термодинамики является законом статистическим, то есть имеет границы своей применимости: оно не применимо к движению отдельной молекулы.
Третье начало термодинамики (теорема Нернста). Третье начало термодинамики гласит: «энтропия физической системы при стремлении температуры к абсолютному нулю принимает значение, которое не зависит от параметров системы и остается неизменной. Такое значение можно положить равным нулю». Другие формулировки теоремы: при стремлении температуры к абсолютному нулю все изменения состояния системы не изменяют ее энтропии; при помощи конечной последовательности термодинамических процессов нельзя достичь температуры абсолютного нуля. М.Планк дополнил теорему гипотезой, согласно которой энтропия всех тел при абсолютном нуле температуры равна нулю. Из теоремы вытекают важные следствия о свойствах веществ при температурах, близких к абсолютному нулю: приобретают нулевое значение удельные теплоемкости при постоянных объеме и давлении, термический коэффициент расширения и давления. Кроме того, из теоремы следует недостижимость абсолютного нуля температуры при конечной последовательности термодинамических процессов.
Если первое начало термодинамики утверждает, что теплота есть форма энергии, измеряемая механической мерой, и невозможность вечного двигателя первого рода, то второе начало термодинамики объявляет невозможным создание вечного двигателя второго рода. Первое начало ввело функцию состояния - энергию, второе начало ввело функцию состояния - энтропию. Если энергия закрытой системы остается неизменной, то энтропия этой системы, состоящая из энтропий ее частей, при каждом изменении увеличивается - уменьшение энтропии считается противоречащим законам природы. Сосуществование таких независимых друг от друга функций состояния, как энергия и энтропия, дает возможность делать высказывания о тепловом поведении тел на основе математического анализа. Поскольку обе функции состояния вычислялись лишь по отношению к произвольно выбранному начальному состоянию, определения энергии и энтропии не были совершенными. Третье начало термодинамики позволило устранить этот недостаток. Важное значение для развития термодинамики имели установленные Ж.Л.Гей-Люссаком законы - закон теплового расширения и закон объемных отношений. Б.Клапейрон установил зависимость между физическими величинами, определяющими состояние идеального газа (давлением, объемом и температурой), обобщенное Д.И.Менделеевым.