Автор работы: Пользователь скрыл имя, 03 Марта 2013 в 15:25, реферат
Ква́нтовая меха́ника — раздел теоретической физики, описывающий квантовые системы и законы их движения. Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк для описания взаимодействия света с атомами. Развитие физики в период конца ХIХ и начала ХХ вв. в связи с чередой открытий во всех её областях и с возникновением новых физических теорий: квантовой механики, специальной и общей теории относительности и т.д., вышло на принципиально новые рубежи.
Государственная образовательное учреждение
Высшего профессионального образования
«Волгоградский
(ГОУ ВПО «ВГПУ»)
Реферат на тему:
«Принципы квантовой механики»
Выполнил:
Студентка группы МТБ-2
Ерёмина Юлия
Проверил:
Прыгунов П. Г.
Волгоград 2011
Введение
Ква́нтовая меха́ника — раздел теоретической физики, описывающий квантовые системы и законы их движения. Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк для описания взаимодействия света с атомами. Развитие физики в период конца ХIХ и начала ХХ вв. в связи с чередой открытий во всех её областях и с возникновением новых физических теорий: квантовой механики, специальной и общей теории относительности и т.д., вышло на принципиально новые рубежи. Глубочайшие теоретические прорывы, а также феноменальные результаты экспериментальных исследований оказались во многом впереди возможностей их осмысления в русле традиционных представлений. Более того, они зачастую противоречили естественной логике и ряду научных положений, выверенных многовековым опытом человечества.
Основные принципы старой квантовой механики.
Основная заслуга в строгой формулировке принципов квантовой механики принадлежит Н.Бору. В первоначальном варианте им использовалась планетарная модель атома Резерфорда, в рамках которой движущемуся по круговой орбите электрону сопоставлялись волна, квадрат модуля которой определял вероятность обнаружения электрона в данной точке (“волна ДеБройля”). Бор постулировал существование стационарных орбит, при движении по которым электрон не излучает электромагнитные волны (оказалось, что на таких орбитах укладывается целое число длин волн ДеБройля). При переходе электрона с одной орбиты на другую изменение его энергии сопровождается излучением или поглощением фотона. Такая модель прекрасно объясняла частотные закономерности в спектре излучения атомов водорода , но еще сохраняла черты отвергаемой классической теории (электроны в атоме имели траектории, которые нельзя наблюдать, не изменяя состояния атома). Теория не могла объяснить некоторых деталей (“тонкой структуры”), обнаруженных при более точных (интерферометрических) исследованиях спектра водорода. Более того, с помощью постулатов Бора не удавалось объяснить наблюдаемые весьма сложные спектры многоэлектронных атомов и их молекулярных соединений. Наконец, “старая” квантовая механика не объясняла множества других явлений, происходящих с атомами и молекулами, которые были уже хорошо известны в химии.
Планетарная модель атома Резерфорда
Спустя более, чем десятилетие, после создания первой квантово-механической модели атома водорода Н.Бором была построена новая законченная и непротиворечивая квантово-механическая теория, в целом с успехом используемая до настоящего времени. Как это уже не раз случалось в физике, ее создание потребовало развития нового математического аппарата, адекватно описывающего сформулированные в ее рамках новые физические идеи.
Положение о первичности статистических законов выдвинули создатели квантовой механики. Сначала многие связывали его с индетерминизмом, поскольку детерминизм в привычном понимании в микромире оказался недостижим. Большая часть ученых воспринимала статистические законы как недостаточность наших знаний о микрообъектах, т.е. как промежуточный этап развития знаний. Но когда оказалось, что вероятностная теория подтверждается многими экспериментами, стали говорить о равенстве динамических и статистических закономерностей в микромире. Эти законы дополняют друг друга и в то же время не могут быть сведены друг к другу. Статистические закономерности — объективные законы природы, отражающие реальные связи в микромире. В макромире поведение индивидуальных объектов подчинено динамическим законам, а совокупности объектов — статистическим. В микромире и объекты, и их совокупности описываются как динамическими, так и статистическими законами. История науки показывает, что динамические законы постепенно сменяются законами статистическими, представляющими более глубокий уровень понимания. Поднимаясь на него, получаем более глубокое понимание сущности и более широкий охват явлений природы. Статистические закономерности приводят к более хорошему согласию с экспериментом. Ее результаты при определенных условиях согласуются с результатами динамических теорий, что и предполагает принцип соответствия Бора.
До создания квантовой механики
Борн вместе с учениками получил
выдающиеся результаты по объяснению
явлений в твердых телах и
кристаллах, используя понятие
Первый принцип квантовой механики: точное измерение какой-либо механической величины может дать в качестве значения этой величины лишь одно из собственных значений соответствующего оператора.
В каждом случае этот постулат фиксирует возможные значения механической величины. Очевидно, его нужно дополнить вторым постулатом, говорящим о том, каковы вероятности измерения различных значений некоторых величин для частицы, начальное состояние которой до намерения известно, т.е. какова вероятность получить возможные значения этих величин в результате измерения. В волновой механике начальное состояние частицы, известное до измерения, изображается определенной волновой функцией. Это и есть Ψ-волна, которая возмущается измерительным прибором. Аналогия с разложением спектра призмой подсказывает, каким должен быть второй постулат. Действительно, Ψ-волну можно разложить в ряд по собственным функциям, соответствующим измеряемой физической величине. Совершенно естественно предположить, что квадраты амплитуд компонент этого спектрального разложения служат мерой относительных вероятностей различных допустимых значений.
второй фундаментальный
Квантовая механика часто противоречит нашим понятиям о здравом смысле. А всё потому, что здравый смысл подсказывает нам вещи, которые берутся из повседневного опыта, а в своем повседневном опыте нам приходится иметь дело только с крупными объектами и явлениями макромира, а на атомарном и субатомном уровне материальные частицы ведут себя совсем иначе. Принцип неопределенности Гейзенберга как раз и очерчивает смысл этих различий. В макромире мы можем достоверно и однозначно определить местонахождение (пространственные координаты) любого объекта (например, этой книги). Не важно, используем ли мы линейку, радар, сонар, фотометрию или любой другой метод измерения, результаты замеров будут объективными и не зависящими от положения книги (конечно, при условии вашей аккуратности в процессе замера). То есть некоторая неопределенность и неточность возможны — но лишь в силу ограниченных возможностей измерительных приборов и погрешностей наблюдения. Чтобы получить более точные и достоверные результаты, нам достаточно взять более точный измерительный прибор и постараться воспользоваться им без ошибок.
Принципы соответствия и неопределенности. Роль прибора и процесса измерения в квантовой механике
Границы применимости существуют у каждой теории. Так, классическая механика описывает движение макроскопических тел при скоростях, существенно меньших скорости света. Эти границы выяснились только после создания СТО — релятивистская меха-
ника расширила классическую на случай больших скоростей. Ценность механики Ньютона при этом не уменьшилась — для малых скоростей тел (по сравнению со скоростью света) поправки малы. При создании квантовой механики было важно строить новую теорию так, чтобы соотношения между величинами были аналогичны классическим, т.е. каждой классической величине нужно было поставить в соответствие квантовую, а потом найти соотношение между квантовыми величинами, пользуясь классическими законами. Такие соответствия можно было найти только из операций измерения.
Принцип соответствия — новая теория не может быть справедливой, если не будет содержать в качестве предельного случая старую теорию, относящуюся к тем же явлениям, если она уже подтверждена опытом в этой области. Этот принцип построения новых теорий в других областях, сформулированный Н. Бором (1923), отражает диалектику соотношения абсолютной и относительной истин. Смена теорий (относительных истин) есть шаг на пути приближения к абсолютной истине, тем самым принцип соответствия отражает объективную ценность физических теорий — новые теории не отрицают старых именно потому, что старые теории с определенной степенью приближения отражают объективные закономерности природы.
В 1927 г. В. Гейзенберг при
поддержке Бора и его школы
предложил устранить
Принцип неопределенности
Гейзенберга — это
Пусть в какой-то момент нам нужно узнать положение и скорость электрона. Самый точный метод — осветить электрон пучком фотонов. Электрон столкнется с фотоном, и его положение будет определено с точностью до длины волны фотона. Для большей точности нужно использовать фотоны наименьшей длины (или большей частоты, или обладающие большими энергией Ε и импульсом hv/c). Но чем больше импульс фотона, тем сильнее он исказит импульс электрона. Для точного знания положения электрона нужно использовать фотоны бесконечной частоты, но тогда и импульс его будет бесконечным, совершенно неопределенным. И, наоборот, желая определить точно импульс электрона,
из аналогичных рассуждений придем к неопределенности положения. Выразив ее как Δq, а неопределенность импульса как Δр, получим Δq Δр ≥ h. Для других сопряженных величин — энергии Ε и времени t — квантово-механическое соотношение неопределенности будет ΔtΔE ≥ А.
Значит, чем точнее фиксирован импульс, тем большая неопределенность в значении координаты. Аналогично связаны энергия и время — точность измерения энергии пропорциональна длительности процесса измерения. И это не неточность определения величин, которая может быть улучшена более точным прибором, это принципиальная неточность определения физических величин в атомной физике. Причина этого — взаимодействие с макроскопическим прибором. Принцип дает ограничения, которые нельзя устранить никакими усовершенствованиями прибора. В классической науке приборы и наблюдения тоже искажали измерения, но эти искажения можно было уменьшать. Разница в том, что соприкасаются и взаимодействуют объекты разных миров: для изучения микромира используются приборы и наблюдатели из макромира. Они-то и вносят искажения в состояния микрообъектов, которые не устранимы. Поэтому будущее состояние микрочастицы не может быть достоверно и точно предсказано. Повышение точности знания одного параметра увеличивает неточность в знании сопряженного ему параметра. Отсюда — дискуссии о непредсказуемости явлений микромира, о «свободе воли» электрона, о победе случайности над детерминизмом, нарушении принципа причинности в микромире и др. Принцип неопределенности иногда называют следствием принципа дополнительности, что до сих пор вызывает дискуссии.
Теперь если вместо координат книги нам нужно измерить координаты микрочастицы, например электрона, то мы уже не можем пренебречь взаимодействиями между измерительным прибором и объектом измерения. Сила воздействия линейки или другого измерительного прибора на книгу пренебрежимо мала и не сказывается на результатах измерений, но чтобы измерить пространственные координаты электрона, нам нужно запустить в его направлении фотон, другой электрон или другую элементарную частицу сопоставимых с измеряемым электроном энергий и замерить ее отклонение. Но при этом сам электрон, являющийся объектом измерения, в результате взаимодействия с этой частицей изменит свое положение в пространстве. Таким образом, сам акт замера приводит к изменению положения измеряемого объекта, и неточность измерения обусловливается самим фактом проведения измерения, а не степенью точности используемого измерительного прибора. Вот с какой ситуацией мы вынуждены мириться в микромире. Измерение невозможно без взаимодействия, а взаимодействие — без воздействия на измеряемый объект и, как следствие, искажения результатов измерения.