Автор работы: Пользователь скрыл имя, 13 Февраля 2015 в 13:24, контрольная работа
Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле являются лишь ничтожным звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.
Введение 1.Первые модели мира.
2.Современная картина происхождения Вселенной.
3.Рождение Вселенной.
4.Ранний этап эволюции Вселенной.
5.Структурная самоорганизация Вселенной.
6.Образование Солнечной системы.
7.Модели будущего Вселенной.
Заключение.
Современные теории предполагают, что энергия вакуума проявляется отнюдь не однозначно. Вакуум может быть возбужденным и находиться в одном из многих состояний с сильно различающимися энергиями, подобно тому, как атом может возбуждаться, переходя на уровни с более высокой энергией, причем различие между самой низкой и самой высокой энергиями невообразимо велико.
Очевидно, вакуум играет роль базовой формы материи. На самой ранней фазе эволюции Вселенной именно ему отводится ведущая роль. Экстремальные условия «начала», когда даже пространство-время было деформировано, предполагают, что и вакуум находился в особом состоянии, которое называют «ложным» вакуумом. Оно характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества. В этом состоянии вещества в нем могут возникать сильнейшие напряжения, отрицательное давление, которое равносильно гравитационному отталкиванию такой величины, которое и вызвало безудержное и стремительное расширение Вселенной - Большой взрыв. Это и было первотолчком, «началом».
С началом стремительного расширения Вселенной возникает время и пространство. По разным оценкам период «раздувания» занимает невообразимо малый промежуток времени - до 10-33 с после «начала». Он называется инфляционным периодом. За это время Вселенная успевает раздуться до гигантского «пузыря», радиус которого на несколько порядков превышает радиус современной нам Вселенной, но там практически отсутствуют частицы вещества. Это еще не то расширение, о котором мы говорили, а предпосылка к нему. К концу фазы инфляции Вселенная была пустой и холодной. Но когда инфляция иссякла, Вселенная вдруг стала чрезвычайно горячей. Этот всплеск тепла обусловлен огромными запасами энергии, заключенными в «ложном» вакууме. Когда это состояние вакуума распалось, его энергия высвободилась в виде излучения, которое мгновенно нагрело Вселенную до 1027 К. С этого момента Вселенная развивалась согласно стандартной теории горячего Большого взрыва.
Ранний этап эволюции Вселенной
Доступная астрономическим наблюдениям современная Вселенная состоит на 99% из водорода и гелия, но в первоначальном плазмоподобном сгустке, не было ни водорода, ни гелия. Теория Большого взрыва утверждает, что от появления протовещества до образования ядер водорода и гелия прошло немногим более трех секунд. На этом временном промежутке стремительно преобразовывались вакуум и вещество, а этапы преобразования определялись процессами расширения и остывания сгустка.
При температуре 1027 К, если только справедлива гипотеза Большого объединения, лептоны и кварки в сгустке свободно превращались друг в друга, то есть были неразличимы. В среде существовал единый вид взаимодействия и роль его частицы-посредника выполнял скалярный бозон, названный X-бозоном. Это была необычайно массивная частица, порядка 10-9 г, что в 1014 раза больше массы протона. Эти частицы исчезли после снижения температуры в ранней Вселенной, остатков их пока не найдено, ожидать, что такие частицы могут быть обнаружены, не приходится, так как подобных температур нет нигде в современной Вселенной.
Через 10-33 секунды после «начала» кварки и лептоны разделились, а сильное взаимодействие отделилось от электрослабого. Единый Х-бозон распался на глюоны и безмассовый бозон - переносчик электрослабого взаимодействия. К моменту прекращения переходов кварков в лептоны число кварков несколько превышало число антикварков (вообще, современное существование Вселенной связано с нарушениями симметрии), а число электронов - число позитронов. В общем сгустке число частиц в каждом миллиарде оказывалось на единицу больше числа античастиц. Это и определило дальнейшее появление вещественной Вселенной с галактиками, звездами, планетами и разумными существами на некоторых из них.
Следующая критическая точка - 10-10 с, когда температура снизилась до 1015 К. После этого безмассовый электрослабый бозон разделился на безмассовый фотон и три тяжелых векторных бозона. Электрослабое взаимодействие разделилось на слабое и электромагнитное. Во Вселенной утвердились все четыре известные ныне науке фундаментальные взаимодействия.
При снижении температуры до 1015 К прекращается свободное существование кварков, они сливаются в адроны.
Ранний период развития Вселенной завершается лептонно-фотонной эрой. Образуются барионы и антибарионы, которые аннигилируют, оставляя после себя фотоны и выделившуюся энергию. Но так как барионов немного больше, чем антибарионов, оставшиеся стали примесью в однородной смеси фотонов и лептонов. Такое состояние было достигнуто через 0,01 с после «начала».
В течение первой секунды температура снизилась до 10 млрд. градусов. Этого оказалось достаточно для отделения от газовой смеси нейтрино и антинейтрино. К 14 секунде температура упала до 3 млрд. градусов и при этом появились условия для соединения и аннигиляции электронов и позитронов. При этом электронов опять-таки было немного больше, чем позитронов. Их избыток и суммарный отрицательный заряд точно компенсировал суммарный положительный заряд протонов, которые появились раньше. Также в протоны превращались свободные нейтроны, пока в конце концов отношение числа протонов к числу нейтронов не стало равно 8:1, оно сохранилось в дальнейшем и определило соотношение водорода и гелия во Вселенной.
Спустя 3 минуты 2 секунды после «начала» температура снизилась до миллиарда градусов. На этом завершилось формирование ранней Вселенной и начался процесс соединения протонов и нейтронов в составные ядра -нуклеосинтез. Плотность вещества в то время уже была в сто раз меньше плотности воды, размеры Вселенной возросли почти до 40 световых лет (для расширения пространства скорость света не является предельной). Через полчаса после «начала» барионное вещество Вселенной состояло из 28% гелия, остальное - ядра водорода (протоны). Но барионное вещество - это ничтожная часть Вселенной, ее основными компонентами были фотоны и нейтрино.
Затем почти 500 тысяч лет шло медленное остывание. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла примерно до 3 тысяч градусов, протоны (ядра водорода) и ядра атомов гелия уже могли захватывать свободные электроны и превращаться при этом в нейтральные атомы водорода и гелия. Излучение отделилось от атомарного вещества и образовало то, что в нашу эпоху назвали реликтовым излучением. В своей структуре реликтовое излучение сохранило «память» о структуре барионного вещества в момент разделения. Сегодня его энергия снизилась до температуры всего 3 КДж. И оно излучает радиоволны в сантиметровом диапазоне. Эти радиоволны были открыты в 1964 г. и стали серьезным подтверждением концепции «горячей» Вселенной. Они равномерно поступают из всех точек небосвода и не связаны с каким-нибудь отдельным радиоисточником.
В результате мы имеем однородную Вселенную, представляющую собой смесь трех почти не взаимодействующих субстанций: лептонов (нейтрино и антинейтрино), реликтового излучения (фотоны) и барионного вещества (атомы водорода, гелия и их изотопы). В сложившихся условиях, когда уже нет ни высоких температур, ни больших давлений, казалось, перспективой было бы дальнейшее расширение и остывание Вселенной, завершающееся образованием «лептонной пустыни» - чем-то вроде тепловой смерти. Но этого не произошло, напротив, произошел скачок, создавший современную структурную Вселенную. По современным оценкам, переход от однородной Вселенной к структурной занял от 1 до 3 миллиардов лет.
Структурная самоорганизация Вселенной.
После Большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газопылевое облако и электромагнитный фон. Спустя I млрд. лет после начала образования Вселенной стали появляться галактики и звезды. К этому времени вещество уже успело охладиться, и в нем стали возникать стабильные флуктуации плотности, равномерно заполнявшие космос. В сформировавшейся материальной среде появлялись и получали развитие случайные уплотнения вещества. Силы тяготения внутри таких уплотнений проявляют себя заметнее, чем за их границами. Поэтому, несмотря на общее расширение Вселенной, вещество в уплотнениях притормаживается, а его плотность начинает постепенно возрастать. Продолжая сжиматься и теряя при этом энергию на излучение, уплотнившееся вещество в результате своей эволюции превращалось в современные галактики. Появление подобных уплотнений и стало началом рождения крупномасштабных космических структур — галактик, а затем и отдельных звезд.
Итак, первым условием появления галактик во Вселенной стало появление случайных скоплений и сгущений вещества в однородной Вселенной. Впервые подобная мысль была высказана И. Ньютоном, который утверждал, что если бы вещество было равномерно рассеяно по бесконечному пространству, то оно никогда бы не собралось в единую массу. Оно собиралось бы частями в разных местах бесконечного пространства. Данная идея Ньютона стала одним из краеугольных камней современной космогонии.
Второе условие появления галактик — наличие малых возмущений, флуктуаций вещества, ведущих к отклонению от однородности и изотропности пространства. Именно флуктуации и стали теми «затравками», которые привели к появлению более крупных уплотнений вещества. Эти процессы можно представить по аналогии с процессами образования облаков в атмосфере Земли. Известно, что водяной пар конденсируется на крохотных частичках — ядрах конденсации.
В середине XX в. были проведены расчеты, описывающие поведение таких сгущений. В частности, было доказано, что в расширяющейся Вселенной участки среды с большей плотностью расширяются медленнее, чем Вселенная в целом. Эти области постепенно отстают в расширении от остальной Вселенной, и в какой-то момент времени они совсем перестают расширяться. Изолированные участки вещества, как правило, очень велики по массе: она составляет в среднем 1015—1016 масс Солнца. Данные массы под действием гравитации начинают сжиматься, причем, происходит это весьма своеобразно — анизотропно. Вначале исходные объекты имеют форму куба, а затем сжимаются в пластинку — «блин». Первоначально изолированные друг от друга плоские «блины» очень скоро вырастают в плотные слои. Эти слои пересекаются, и в процессе их взаимодействия образуется ячеисто-сетчатая структура, где стенками огромных пустот служат «блины». Отдельный «блин» представляет собой сверхскопление галактик и имеет уплощенную форму. Эти первичные сгустки, продолжая сжиматься, становятся сферически симметричными. Кроме того, внутри себя они одновременно фрагментируются на звезды
ОБРАЗОВАНИЕ
СОЛНЕЧНОЙ СИСТЕМЫ |
Модели будущего вселенной.
Что же ожидает нашу
Вселенную в будущем, если она будет неограниченно
расширяться? О процессе продолжающегося
расширения нашей Вселенной свидетельскуют
почти все данные наблюдений. По мере расширения
пространства материя, становится все
более разреженой, галактики и их скопления
все более удаляются друг от друга, а температура
фонового излучения приближается к абсолютному
нулю. Со временем все звезды завершат
свой жизненный цикл и превратятся либо
в белых карликов, остывающих до состояния
холодных черных карликов, либо в нейтронные
звезды или черные дыры. Эра светящегося
вещества закончится, и темные массы вещества,
элементарные частицы и холодное излучение
будут бессмысленно разлетаться в непрерывно
разряжающейся пустоте.
Впрочем, черные дыры
не останутся без работы. Имея на то достаточно
времени, черные дыры поглотят огромное
количество вещества вселенной.
Если теория Хокинга верна, то черные дыры
будут продолжать испускать излучение,
но черным дырам (с массой равной массе
Солнца) потребуется очень длительное
время, прежде чем это заметно изменит
что-то. Фоновое излучение остынет гораздо
раньше, чем черные дыры начнут излучать
больше, чем они будут поглощать из этого
фонового излучения. Такой момент настанет
тогда, когда возраст Вселенной станет
примерно в десять миллионов раз больше
предполагаемого на сегодня должно пройти
около 10 66 лет, прежде чем черные дыры солнечной
массы начнут взрываться, выбрасывая потоки
частиц и излучения.
Дж. Берроу из Оксфордского университета
и Ф. Типлер из Калифорнийского университета
в своих работах нарисовали картину отдаленного
будущего неограниченно расширяющейся
Вселенной. Даже внутри старой нейтронной
звезды сохраняется еще достаточно энергии,
чтобы время от времени сообщать частицам,
находящимся вблизи ее поверхности, скорость,
превышающую скорость убегания. Предполагается,
что в результате этого через достаточно
продолжительное время все вещество нейтронной
звезды должно испариться.
По мнению Берроу и Типлера,
если запас энергии во Вселенной достаточен
только для того, чтобы обеспечить ее неограниченное
расширение, то эффект электрического
притяжения в электронно-позитронных
парах перевесит и гравитационное притяжение,
и общее расширение Вселенной как целого.
За определенное конечное время все электроны
проаннигилируют со всеми позитронами.
В конечном итоге последней стадии существующей
материи окажутся не разлетающиеся холодные
темные тела и черные дыры, а безбрежное
море разреженного излучения, остывающего
до конечной, повсюду одинаковой, температуры.
Второе начало термодинамики
показывает, что конец эволюции Вселенной
наступит, когда выровняется температура
ее вещества. Так как тепло передастся
от более теплых тел к более холодным,
различие их температур со временем сглаживается,
совершение дальнейшей работы становится
невозможным. Эта мысль о «тепловой смерти»
Вселенной была высказана еще в 1854 г. Г.
Гельмгольцем (1821-1894). Если победит тяготение,
то Вселенная когда-нибудь склапсирует
в процессе Большого сжатия, которое может
оказался концом ее существования, либо
прелюдией к новому расширению.
Если же силы тяготения проиграют
«сражение», то расширение будет продолжаться
неограниченно долго, но тяготение будет
продолжать играть существенную роль
в определении окончательного состояния
вещества. Вещество может превратиться
в безбрежное море однородного излучения,
либо продолжится рассеивание темных
холодных масс. В неясном далеком будущем
прошедшая эпоха звездной активности
может оказаться лишь кратчайшим мгновением
в бесконечной жизни Вселенной.