Автор работы: Пользователь скрыл имя, 07 Ноября 2014 в 08:03, реферат
Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия.
Введение 3
1. Общая характеристика звезд 4
2. Межзвездная среда ………………………………………………………..6
3. Процесс звездообразования. 8
4.Понятие звездной эволюции………………………………………………10
Заключение 12
Список литературы 13
Содержание
Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия.
«Жизненный путь звезд, представляет собой законченный цикл – рождение, рост, период относительно спокойной активности, агония, смерть, напоминающий жизненный путь отдельного организма. В некоторых случаях можно говорить об оставленном звездами «потомстве», о последовательных поколениях звезд. Путь этот не гладок. Он естественным образом разбивается на стадии и подстадии, часто не менее резко разграниченные, чем этапы, переживаемые животным или человеком в течение жизни».
Звезды – это огромные раскаленные солнца, но столь удаленные от нас по сравнению с планетами Солнечной системы, что, хотя, они сияют в миллионы раз ярче, их свет кажется нам относительно тусклым.
При взгляде на ясное ночное небо вспоминаются строки М.В. Ломоносова:
Открылась бездна, звезд полна,
Звездам числа нет, бездне – дна.
В ночном небе невооруженным глазом можно видеть около 6000 звезд. С уменьшением блеска звезд число их растет, и даже простой их счет становится затруднительным. «Поштучно» сосчитаны и занесены в астрономические каталоги все звезды ярче 11-й звездной величины. Их около миллиона. А всего нашему наблюдению доступно около двух миллиардов звезд. Общее количество звезд во Вселенной оценивается в 10 22 .
Различны размеры звезд, их строение, химический состав, масса, температура, светимость и др. Самые большие звезды (сверхгиганты) превосходят размер солнца в сотни и тысячи раз. Звезды-карлики имеют размеры Земли и меньше (около 10 км). Предельная максимальная масса звезд равна примерно 60 солнечным массам, а минимальная примерно 0,03 солнечной массы.
Весьма различны и расстояния до звезд. Свет звезд некоторых далеких звездных систем идет до нас сотни миллионов световых лет. Самая близкая к нам звезда – Проксима Центавра – маленькая звезда, ее масса в 7 раз меньше, чем масса нашего солнца, а поверхностная температура (3000°) в два раза меньше, чем температура на поверхности Солнца. Поэтому она светит на небе очень тускло и не видна невооруженным глазом, хотя и является самой близкой к нам звездой. Она отстоит от Земли на расстоянии всего 4,2 световых лет. Курьерский поезд, идя без остановок со скоростью 100 км/ч, добрался бы до нее через 40 миллионов лет!
Звезды в космическом пространстве распределены неравномерно. Они образуют звездные системы: кратные звезды (двойные, тройные и т.д.); звездные скопления (от нескольких десятков звезд до миллионов); галактики – грандиозные звездные системы, в которых содержатся миллиарды и сотни миллиардов звезд. Обычно в галактиках звездная плотность также весьма неравномерна. Выше всего она в области галактического ядра.
Большинство звезд находятся в стационарном состоянии, т.е. не наблюдается изменений их физических характеристик. Это отвечает состоянию равновесия. Однако существуют и такие звезды, свойства которых меняются видимым образом. Их называют переменными звездами и нестационарными звездами. Переменность и нестационарность – проявления неустойчивости состояния равновесия звезды. Переменные звезды изменяют свое состояние (блеск, излучение в различных диапазонах электромагнитных волн, магнитное поле и др.) регулярным и нерегулярным образом. В некоторых случаях нестационарность может быть вызвана взаимодействием с другими звездами, перетеканием вещества от одной близкой соседки к другой. Следует отметить также и новые звезды, в которых непрерывно или время от времени происходят вспышки. При вспышках (взрывах) сверхновых звезд вещество звезд в некоторых случаях может быть полностью рассеяно в пространстве.
Основные эмпирические знания о свойствах звезд получены из анализа их спектров, которые несут информацию о состоянии внешних слоев звезд. Они позволяют определить химический состав, температуру поверхности, магнитные поля, скорость движения и вращения, расстояние до звезды. Эти данные соотносятся с теоретическими моделями, расчетами. В настоящее время разработана детальная и убедительная теория строения и эволюции звезд, предсказавшая ряд фундаментальных закономерностей, присущих звездной материи (например, существование нейтронных звезд).
Звездообразование – это процесс рождения звезд из межзвездного газа, газопылевых образований, облаков. Процесс звездообразования продолжается непрерывно, он происходит и в настоящее время.
Как мы уже отмечали, для каждого поколения звезд характерны конкретные условия звездообразования. Кроме того, первые поколения звезд образовывались в основном в области галактического центра, во всем его объеме. В дальнейшем, в связи с тем, что межзвездный газ все больше концентрировался в плоскости Галактики, звездообразование происходило и происходит сейчас в этой галактической плоскости.
Звезды образуются не в одиночку, а группами, скоплениями, что является результатом гравитационной конденсации, сжатия (коллапса) громадных объемов межзвездного газа, газопылевых облаков. Этот процесс хорошо описывается теорией. Кроме того, имеются многочисленные наблюдательные данные рождения звезд. Их число особенно увеличилось с возникновением радио- и инфракрасной астрономии, для диапазонов которых газ и пыль прозрачны.
Звездообразование начинается со сжатия и последующей фрагментации (под действием гравитационных сил) протяженных холодных облаков молекулярного межзвездного газа. Масса газа должна быть такой, чтобы действие сил гравитации преобладало над действием сил газового давления. При современных температурах межзвездного газа (10-30 К) его минимальная масса, которая может конденсироваться, коллапсировать, составляет не менее тысячи масс нашего Солнца. Каждый из образовавшихся фрагментов может в свою очередь разделяться на отдельные фрагменты (так называемая каскадная фрагментация). Последняя серия фрагментов и представляет собой материал, из которого непосредственно формируются звезды.
По мере сжатия в таком фрагменте постепенно выделяются ядро и оболочка. Ядро – это центральная, более плотная и компактная часть, достигшая гидростатического равновесия. Оболочка – это внешняя, протяженная, продолжающая коллапсировать часть газопылевого фрагмента. (Из материала оболочки впоследствии при ее преобразовании в газопылевой диск могут образовываться окружающие звезду планеты.) Процесс конденсации сопровождается возрастанием магнитного поля, ростом давления газа. Долгое время оболочка остается плотной и непрозрачной, что делает рождающуюся звезду невидимой в оптическом диапазоне. (Зато ее можно зафиксировать средствами радио- и инфракрасной астрономии.) Так постепенно формируются протозвезды – грандиозные непрозрачные массы межзвездного газа со сформировавшимся ядром, в которых гравитация уравновешивается силами внутреннего давления.
С образованием протозвезды рост массы ее ядра не прекращается. Масса ядра продолжает увеличиваться а счет выпадения газа на ядро из оболочки (аккреция). Силы гравитации растут и разогревают ядро, которое претерпевает качественные изменения, в том числе возрастают его светимость и давление излучения. Затем рост ядра и конденсация газа из оболочки прекращаются. Оболочка постепенно «сдувается» излучением и рассеивается. А ядро со стороны приобретает вид звездного объекта. Этот процесс гравитационного сжатия длится относительно недолго (от сотен тысяч до нескольких десятков млн лет) и заканчивается тогда, когда температура в центре достигает тех значений (10-15 млн градусов), при которых включается другой источник энергии – термоядерные реакции. Сжатие при этом прекращается и процесс звездообразования завершается: протозвезда окончательно превращается в звезду.
Теория звездообразования не только описывает его общий ход, но и позволяет выделить факторы, которые могут замедлять или стимулировать звездообразование. К замедляющим факторам относятся: незначительная масса протозвезды, высокая скорость вращения газопылевого облака, сильное магнитное поле и др. Стимулирующими звездообразование процессами являются: ударные волны, порожденные вспышками сверхновых звезд; ионизационные фронты; столкновение облаков; звездный ветер (поток плазмы от горячих звезд) и др. Например, если масса протозвезды очень мала (менее 0,08 массы Солнца), то ее гравитационное сжатие происходит очень медленно, а температура в ядре никогда не достигает значений, необходимых для начала термоядерной реакции. Такие протозвезды будут сжиматься очень и очень долго (время их гравитационного сжатия превышает время жизни Галактики), постепенно превращаясь в так называемые черные карлики.
4. Понятие звездной эволюции
Звезды – грандиозные плазменные системы, в которых физические характеристики, внутреннее строение и химический состав изменяются со временем. Время звездной эволюции, разумеется, очень велико, и мы не можем непосредственно проследить эволюцию той или иной конкретной звезды. Это компенсируется тем, что каждая из множества звезд на небе проходит некоторый этап эволюции. Суммируя наблюдения, можно восстановить общую направленность звездной эволюции (по диаграмме Герцшпрунга – Рессела она отображается главной последовательностью и отступлением от нее вверх и вниз). Современная теория строения и эволюции звезд объясняет общий ход развития звезд в хорошем согласии с данными наблюдения.
Основные фазы в эволюции звезды – ее рождение (звездообразование); длительный период (обычно стабильного) существования звезды как целостной системы, находящейся в гидродинамическом и тепловом равновесии; и, наконец, период ее «смерти», т.е. необратимое нарушение равновесия, которое ведет к разрушению звезды или к ее катастрофическому сжатию.
Ход эволюции звезды зависит от ее массы и исходного химического состава, который, в свою очередь, зависит от времени образования звезды и ее положения в Галактике в момент образования. Чем больше масса звезды, тем быстрее идет ее эволюция и тем короче ее «жизнь». Для звезд с массой, превышающей солнечную массу в 15 раз, время стабильного существования оказывается всего около 10 млн лет. Это крайне незначительное время по космическим меркам, ведь время, отведенное для нашего Солнца, на 3 порядка выше – около 10 млрд лет.
Как по отношению к истории человечества, так и по отношению к истории звезд можно говорить об их поколениях. Каждое поколение звезд имеет особые закономерности формирования и эволюции. Например, звезды первого поколения образовались из вещества, состав которого сложился в начальный период существования Вселенной – почти 75% водорода и 25% гелия с ничтожной примесью дейтерия и лития. В ходе, по-видимому, достаточно быстрой эволюции массивных звезд первого поколения образовались более тяжелые химические элементы (в основном вплоть до железа), которые впоследствии были выброшены в межзвездное пространство в результате истечения вещества из звезд или их взрывов. Звезды последующих поколений уже формировались из вещества, содержащего 3-4% тяжелых элементов. Поэтому, говоря о звездной эволюции, надо различать по крайней мере три значения этого понятия: эволюция отдельной звезды, эволюция отдельных типов (поколений) звезд и эволюция звездной материи как таковой. В дальнейшем мы будем иметь в виду закономерности эволюции отдельных звезд.